

ULLETIN DE LIAISON

ANDRE SCHANDEL

16 chemin de BEULENWOERTH 67000 STRASBOURG ROBERTSAU FRANCE

tél: 88 31 30 25

SOMMAIRE

ABONNEMENT VOLLIBRE SUBSCRIPTION

André SCHANDEL

16 chemin de Beulenwoerth 67000 STRASBOURG ROBERTSAU FRANCE

Tél: 03 88 31 30 25

Paiement par chèque bancaire ou virement CCPostal A. 7957-58-59-60-61 Schandel 1 190 08 S Strasbourg

Abos Vol Libre über Eurochek's in Franz. francs oder DM . Überweisung auf deutsche Bank Kehl blz: 66470035 Konto 0869727 auf Namen von A. SCHANDEL

Subscription chek over french bank or Eurocheks in 7966- F1A Anfänger P. Petrusek. French Francs, of the name from A. SCHANDEL

USA and CANADA make cheks payable in US Dollars to : Peter BROCKS

9031 East Paradisre Dr. SCOTTSDALE AZ 85 260 6888

6 numéros : 160 F - 46 DM - 32 \$ -25 EUROS

7935-Mario Rocca

7936- Sommaire

7937- Nez wake Andriukov

7938- Coupe d'hiver S. WILLIS (GB)

7939- Coupe d'hiver E. Flyn (GB)

7940-41 - IMAGES VOLLIBRE

7942- 43- VP . 45 F1C de Vaclav Patek

7944- GOELAND II J. Besnard.

7945-46-47-48-49-50-

ALBATROS - BALBATROS -CALBATROS planeurs de J. Besnard.

7951- Coupe Wakefield - P. Lepage 78952-554-55-56-

> Coupe d'hiver 1956 BABAR JP Templier

MICRO SAINT - PAM R. Jossien

7962- Profils d'aile pour coupe d'hiver

7963-64 - COUPE D'HIVER 1999

7965- IN DEUTSCH - Und Gott schuf die Frau -Jacques Valéry

7967- HERMENEGILDO- Märchen von U. ALVAREZ.

7968- F1D- STORK J. Tipper.

7969-70-71-72-73-

Go to it, tailplane! J. Wantzenriether

7974- PZL P- 7A

7975- Beginner de R. Lotz.

7976-77-78-79-

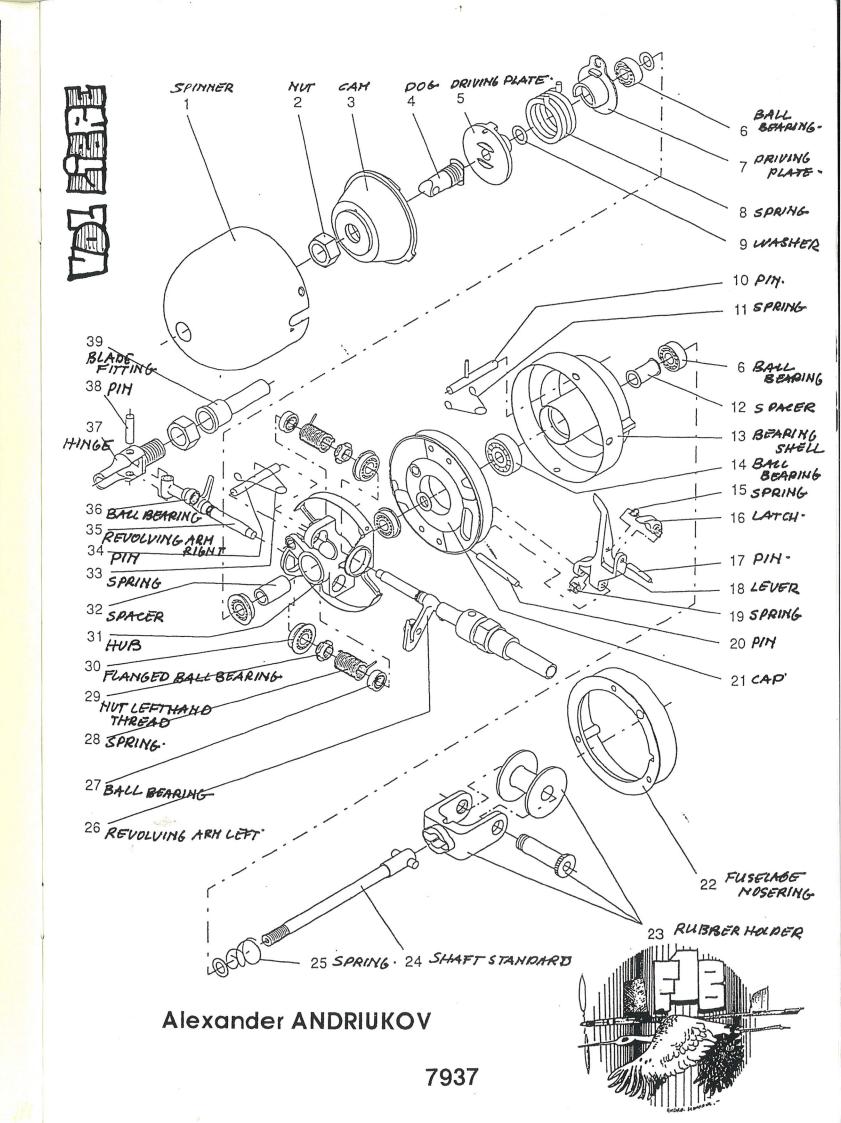
NAVION de Earl Stahl.

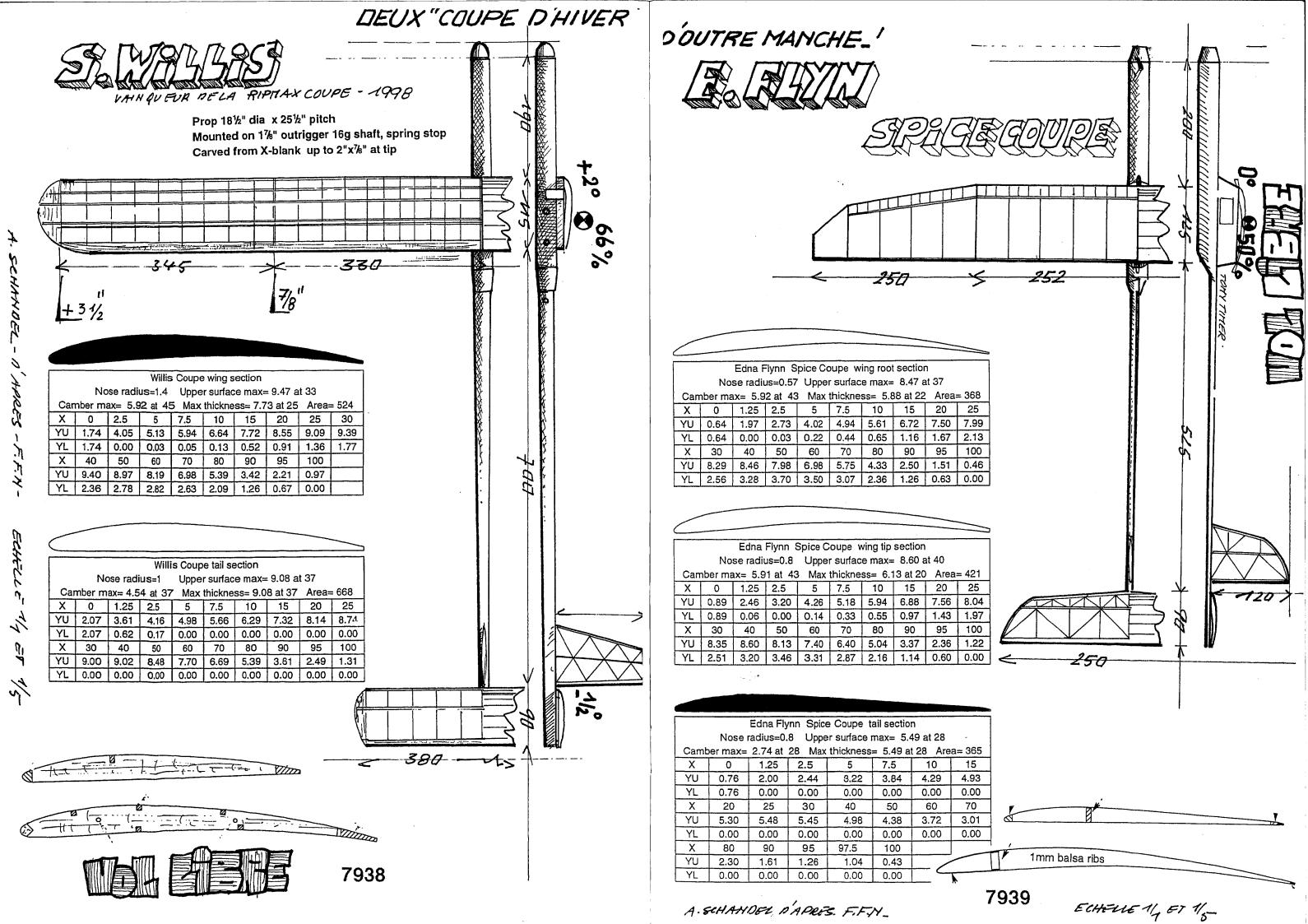
7980- Maguette 66 modifications de règlements.

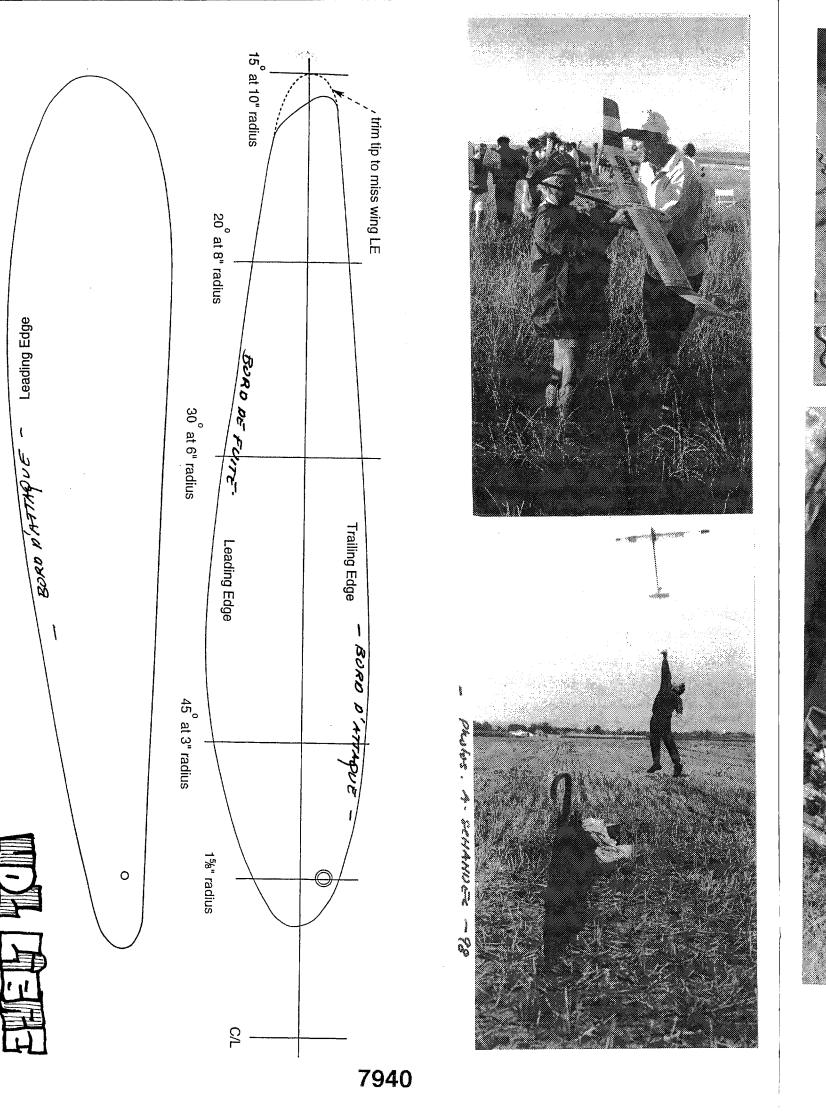
7981-883- Récupération de modèles avec balises- Lefebvre Thierry.

7984-85- In memoriam ... Jacques Valéry .

7986- Hermenegildo "le poids lourd" U. Alvarez.

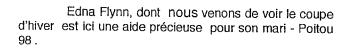

7987-88-89-90 - Suite du sommaire des VOL LIBRE 97 à 128

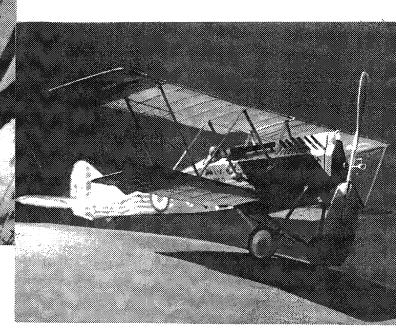

7991- Profils Vol Libre


7992-93- Courrier des lecteurs .

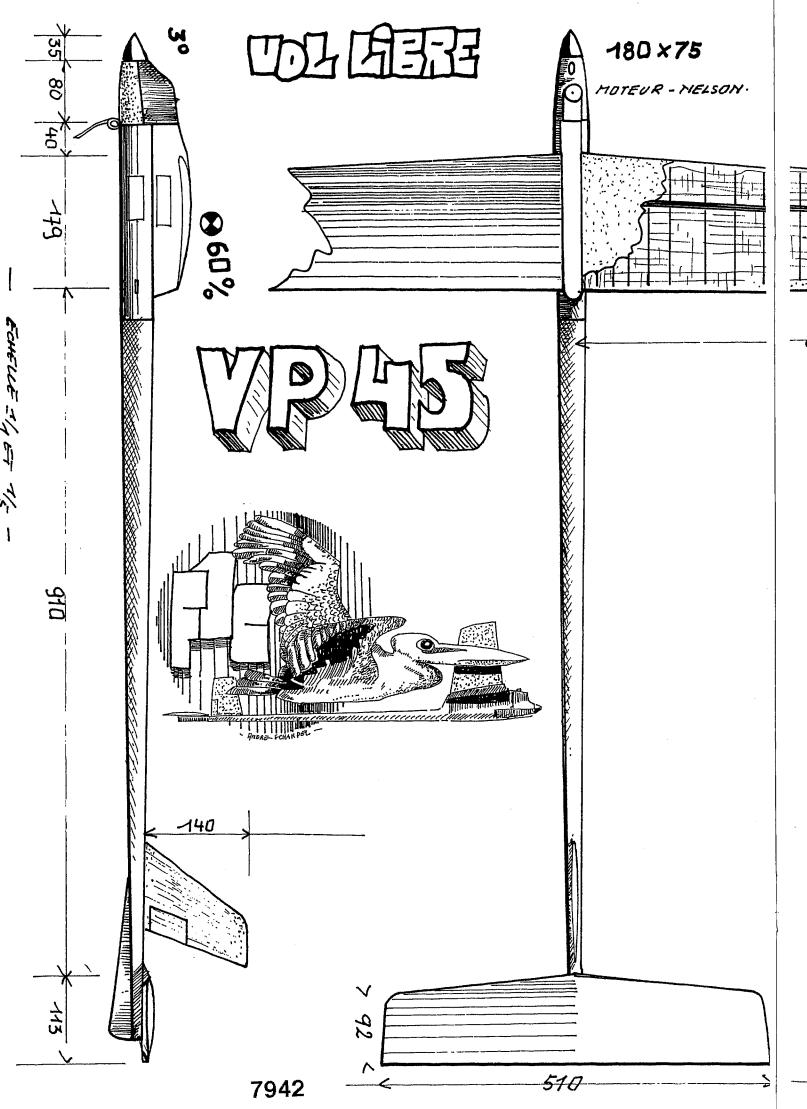
7994- BEJA 98- F1C


7936

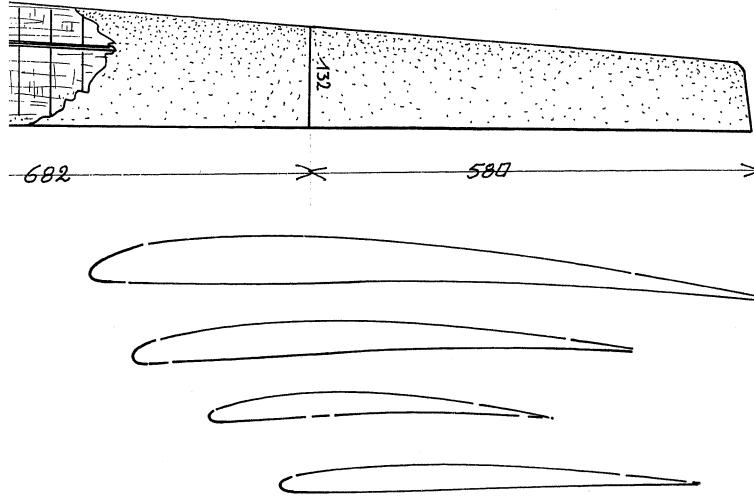



Gerd Aringer , Bilzen 98 , entre deux averses , un parapluie symboliquement planté là , assiste à l'expédition du modèle vers un ciel de plomb .

Un très joli modèle de a. Méritte "The Aristocrate " qui correspond à la proposition de P. Lepage "Coupe wakefield ".


Un planeur rétro (1940) made in Italy le VE 13, de E. VACALEBRE, premier modèle perdu au dessus de la mer. Deuxième édition en automne 1997.

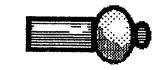
Un modèle "peanut " de Ulises Alvarez , biplan MVA , alleron et hélice règlables . 10,5 g en oredre de vol , 464 pièces pour la construction !


Qui dit mieux !

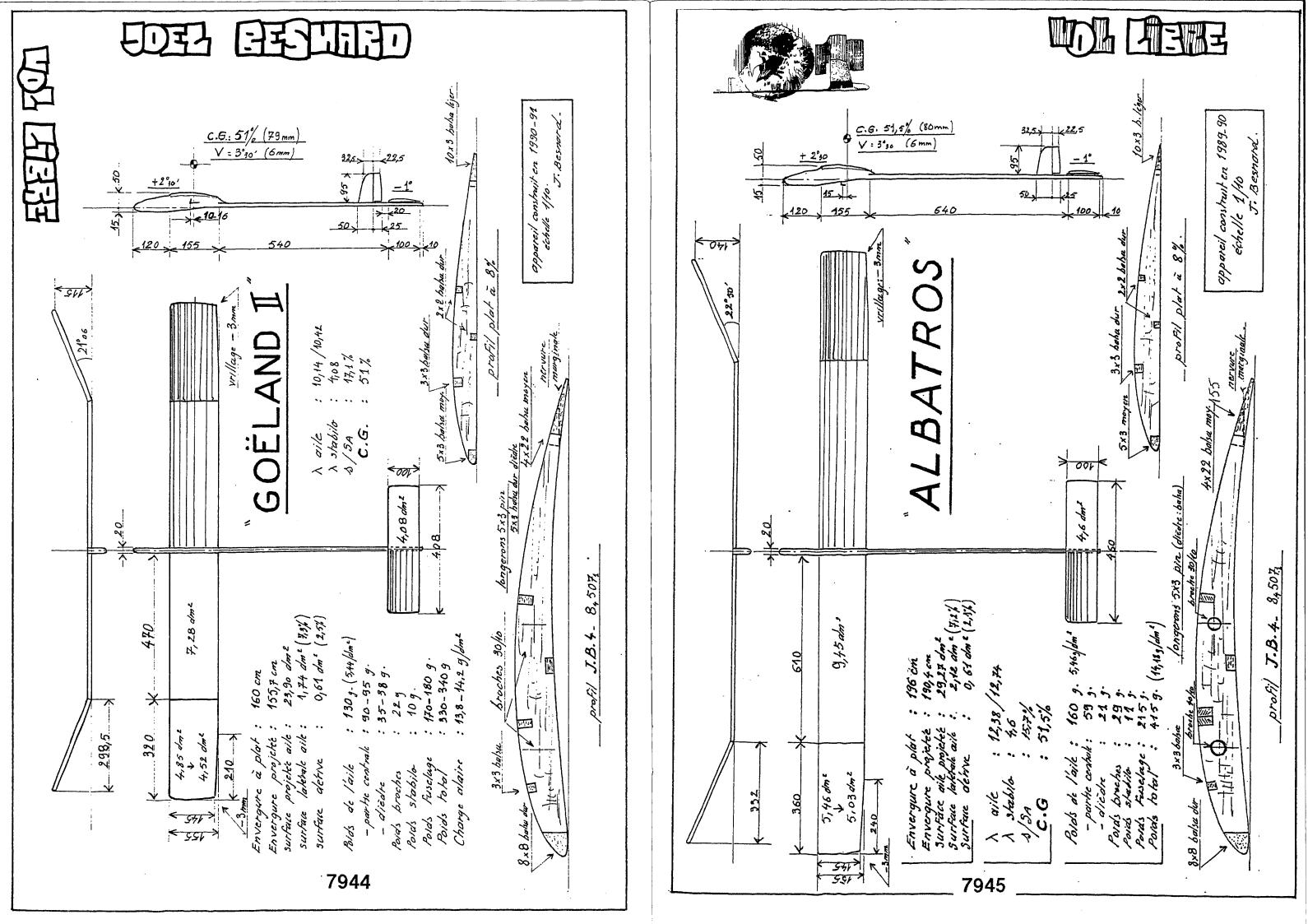
7941

MAGAIN PAIR

La question de la relève est toujours et même de plus en plus à l'ordre du jour , et ce n'est pas en se croisant les bras , et en attendant que d'autres fassent ce qu'on pourrait faire soi-même, que la solution va venir .


Dans certains fiefs, clubs, ou associations sous l'instigation "d'éducateur s" ou " moniteurs" un travail de fond se fait et porte des fruits.

Joël Besnard, depuis de longues anneés en prolongement de sa profession d'enseignant, s'occupe à Ludres d'un groupe de jeunes, avec une grande éfficacité.


Des Champions de France en Cadet et Juniors sont sortis de ses rangs . . Ce fut encore le cas l'année dernière avec un titre de champion junior à Rézonville .

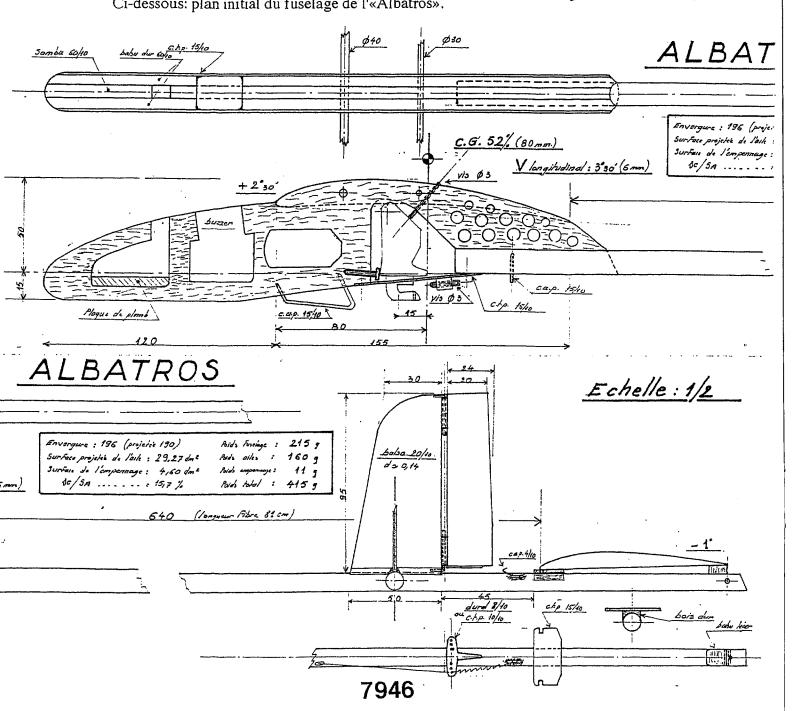
Comme nous le verrons dans de prochains numéros VOL LIBRE en d'autres lieux on effectue , le même travail de fond auprès des jeunes , et là aussi avec succès .

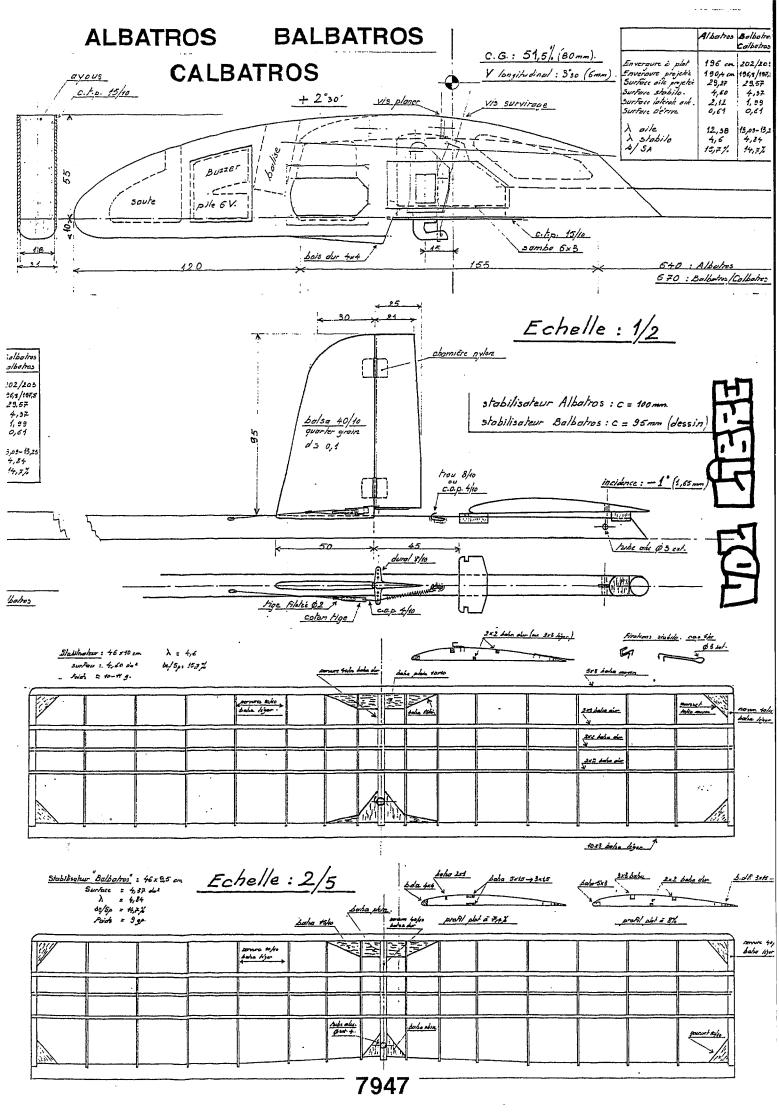
Exemples à suivre au lieu de se lamenter.

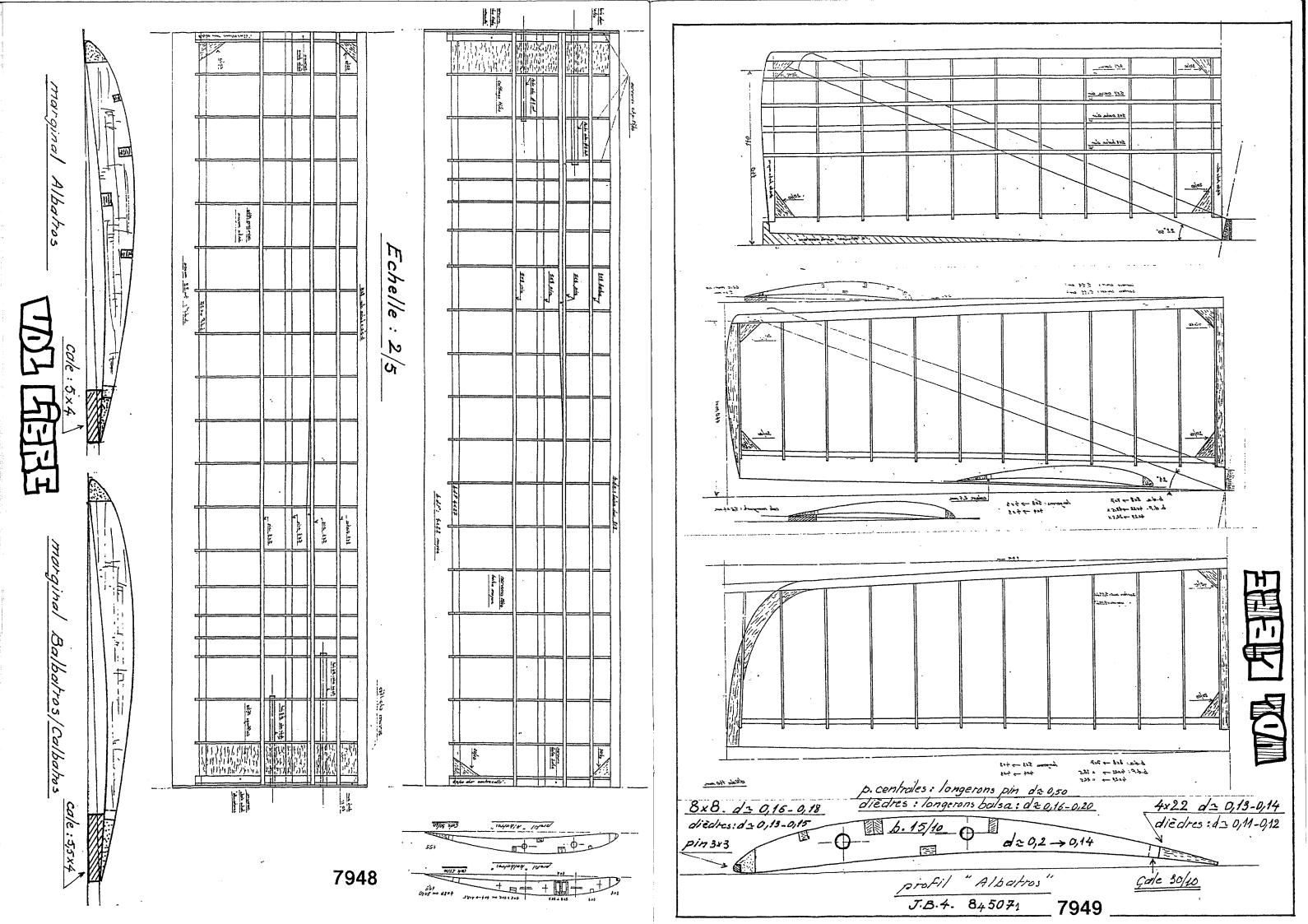
90

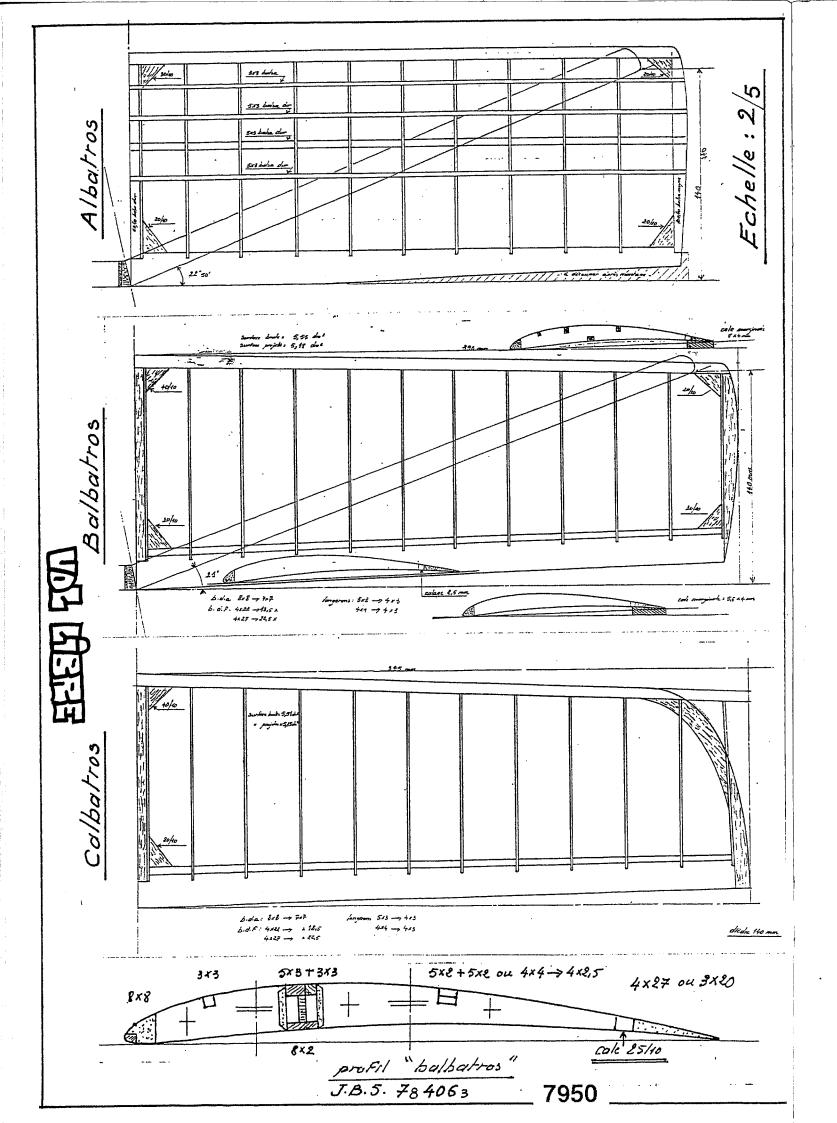
L'Albatros

C'est le grand frère du «Goéland II». Il possède les mêmes qualités de vol, qualités qui en font un bon nordique de début, tout temps.


La construction est identique. Le b. d. a. reçoit une baguette 3 x 3 pin (congé fait à la toupie), sauf si le balsa est très dur (d≥ 0, 2). Le longeron principal est doublé sur 33 cm (profil J.B.4). L'appareil est bien sûr équipé d'un crochet verrouillé taré de 3,3 kg à 3,5 kg.


De l'«Albatros» sont dérivés deux appareils : le «Balbatros» (dièdres trapézoïdaux) et le «Calbatros» (dièdres trapézoïdaux avec bord marginal arrondi). Le gain en performance au petit matin est appréciable: plus de 15 secondes. Les profils utilisés sont le J.B.4-84507₁. (initialement celui du «Goéland II» et de l'«Albatros») et le J.B.5-784063. (longeron caissonné). Ma préférence va au J.B.4, très sain comme comportement. Le vrillage des ailes est identique à celui du «Goéland»: -3 mm au dièdre intérieur et -4 mm au dièdre extérieur, ou -3 mm partout et on choisit après l'entoilage l'aile la plus positive.


Les résultats obtenus en quelques années sont aussi encourageants que ceux obtenus avec le «Goéland II»: en F1A junior le club à remporté trois titres de champions de France, deux places de troisième et obtenu deux sélections en équipe de France.


Ci-dessous: plan initial du fuselage de l'«Albatros».

J. Besnard

COUPE WANEFIELD

 $AUJOURD'HUI\; le$ F1B est devenu un modèle "HIGH TECH" et le F1G est en train de le devenir, ce qui est logique car l'esprit des règlements respectifs est le même. L'accès, à ces catégories, pour un débutant est devenu difficile voire dissuasif: il serait bon de penser à la relève et, fort de cette constatation il m'est venu l'idée d'une catégorie d'ACCES qui pourrait s'appeler :

COUPE WAKEFIELD par exemple.

proposition de plus, un avortement de plus" Peut-être .

Imaginons dans les années 30 le Wake

MC = 17 à 19 dm2 décollage obligatoire .

Avec les connaissances actuelles de l'évolution de cette formule qu'aurions nous

Supprimer le maître couple ? Certainement pas car vous voyez le résultat actuel avec les incontournables manches à balais en kevlar ou carbone. Au contraire, il aurait fallu interdire les M.C. artificiels qui ont enlaidi bon nombre de taxis.

Supprimer le décollage obligatoire ? Encore une solution de facilité qui complique les modèles en rendant aujourd'hui indispensable les IV et dérives commandées. Quel est le moyen d'éviter les complications mécaniques du bloc hélice ? Rendre l'hélice non repliable fixe obligatoire, oui je sais, mais avant de critiquer avez-vous réfléchi aux avantages d'un modèle simple qui monte haut et n'est pas perdu de vue à chaque vol. à cause d'un plané trop performant ?

La recherche peut s'orienter dans des domaines nouveaux : meilleure adaptation de l'hélice (montée, plané) profile d'aile, inertie, mùatériaux nouveaux etc.... Je sais qu'il existe en France un certain nombre de MODEMLISTES qui ont supprimé de leur répertoire le F1B et qui construisent des modèles anciens ou des P 30 pour les raisons que je viens d'évoquer.

Ma proposition est la suivante :

17 à 19 dm2 Hélice roue libre pas fixe

Maître couple sans artifice

décollage obligatoire en tenant l'extrémité

d'aile et d'hélice . maxi 180

Modèle tout fixe sauf déthermalo.

Valeur chrono du modèle :120 à 150 modulé par la masse mini du taxi en partant sur la base d'un écheveau de caoutchouc de 35 g et, probablement . 180 g de masse totale . Si par miracle, j'arrivais à faire passer cette tentative de subversion, je verrais volontiers un jugement statique à l'occasion des grandes rencontres: STYLE CONCOURS D'ELEGANCE

Hormis le fait que cette formule changerait nos conceptions actuelles du vol libre, voici quelques uns des aspects positifs de cette proposition

- modèle facile à réaliser

-l'emploi de matériaux nouveaux est toujours possible

-coût faible

-modèle pouvant ressembler à un vrai " encore une formule de plus, une très important pour séduire les jeunes.

-équilibre entre les performances du modèle (120-150 ") et les qualités du pilote (détection de l'ascendance, règlages..)

-modèle pouvant être spectacumlaire par sa montée.

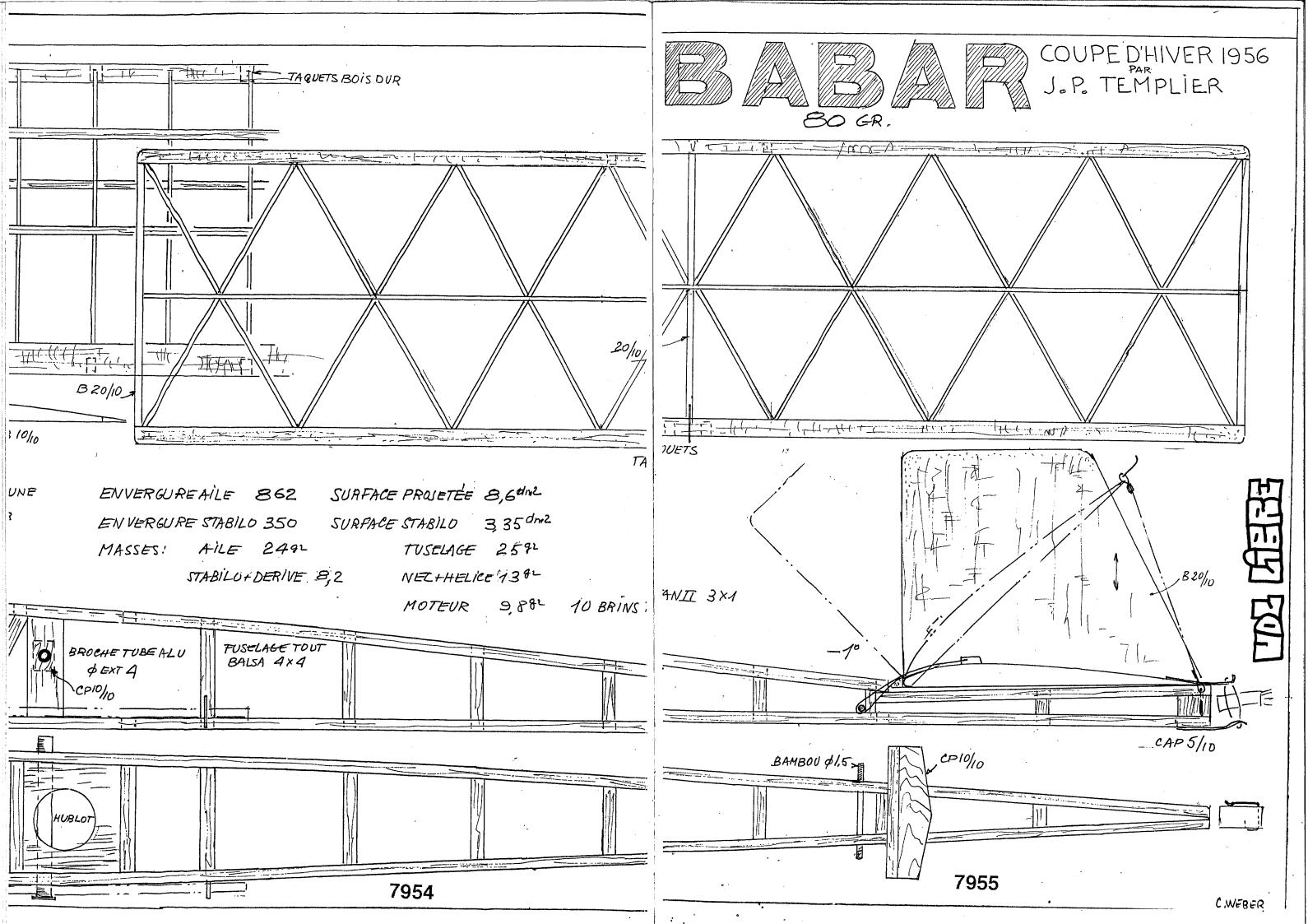
-possibilité de réaliser des boîtes de construction (très important lors de démonstrations publiques); c'est la seule réponse possible à des gens intéressés qui n'ont pas de contact avec notre micro-société.

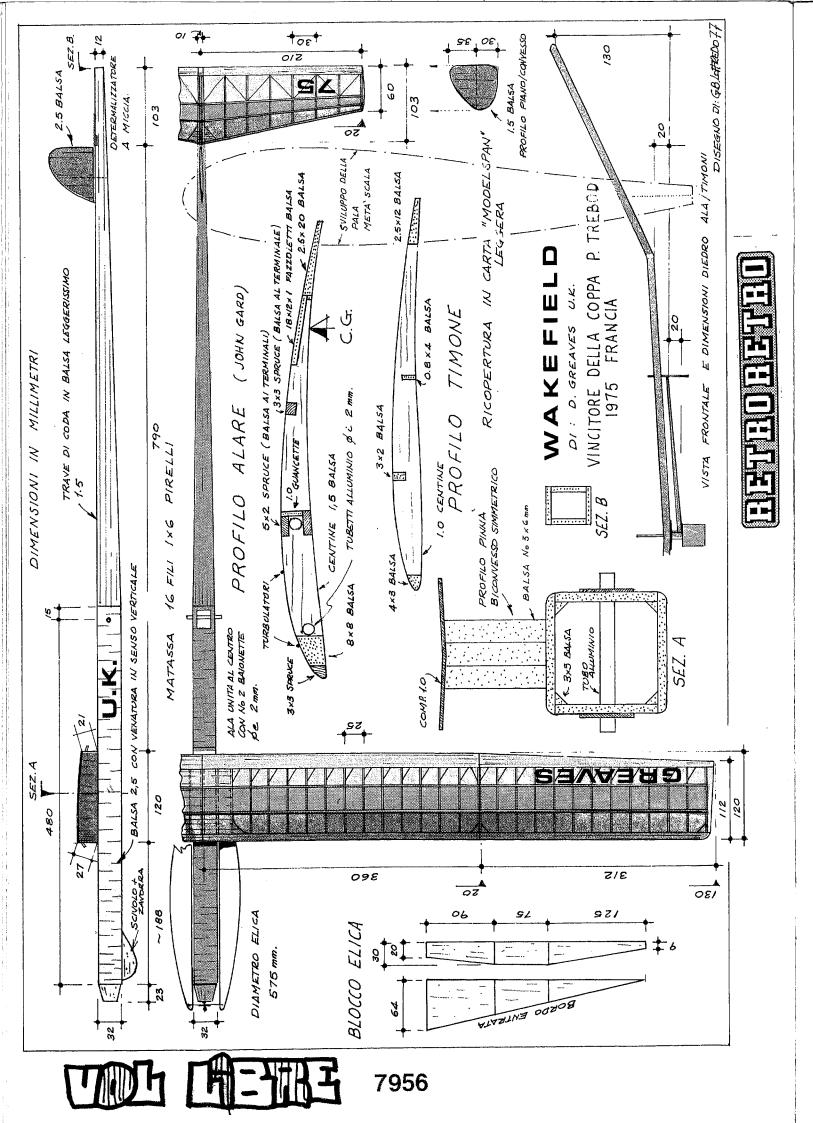
Et si de t'agreer je n'emporte le prix J'aurais du moins l'honneurde l'avoir

Jean de La FONTAINE

Henri ARIBAUD 🕂 Robert BERTHE


Henri ARIBAUD et Robert BERTHE deux aéromodélistes du sud ouest, anciens mem bres de l'Equipe de France au début des années 50, nous ont quittés au mois de février 1999.


Robert Berthe pratiquait les catégotires planeurs A 2 et A 1 jusqu'en 1992.


Henri Aribaud spécialiste du wakefield concourait également en CH.

tous deux furent mem bres de l'Aéro Club de l'Aude . Robert Berthe termina sa carrière modéliste à l'Aéro Club René Barbaro et de l'Aérospatiale Toulousaine en 1992.

VOL LIBRE et tous ses lecteurs expriment leurs sincères condoléances aux familles et amis de Henri ARIBAUD et Robert BERTHE . -

35 DE

L'ORIGINE DE L'ÉTUDE

En étudiant, c'est à dire en choisissant les dimensions à donner à un modèle MICRO PAPIER 35 de début, je me suis servi des expériences antérieures vécues sur trois modèles.

Il s'agit d'abord du MICRO-SAINT 33 que j'ai créé en 1979 (après l'expérience, déjà aiguisée, de trois modèles 33 cm recouverts de papier japon). Il fut le premier micro "papier" recouvert de polypropylène, film d'épaisseur 4 microns (4/1000 mm), revêtement ne réagissant pas à l'humidité, ce qui est l'ennui du papier.

Le MICRO-SAINT 33 gagna une dizaine de concours, dont quatre records en salle : à Montreuil (5'43"), à Orléans (6'49"), à Briesur-Marne (7'38") et Louveciennes (?).

En 1985, je dessine TRAVER-SAINT, de 35 cm. cette fois. Il est probablement le Micro Papier le plus poussé de ceux que j'ai dessinés. Ce modèle volera surtout en Belgique, entre les mains de plusieurs modélistes dont José LESUISSE, du PAT, qui en fit le dessin soigné pour VOL LIBRE.

L'AMÉLIORATION DU PLAN

En 1991, je garde tous les éléments du MICRO-SAINT 33 sauf les ailes que je porte à 35 cm d'envergure et 105 mm de corde, ailes rectangulaires à bouts arrondis. Ce modèle vole très bien et manque de gagner, en 1992, à VITRY, le modèle s'étant accroché, au 2ème vul, à un fil, qui pend des éclairages. En 1993, le même vole très bien au concours de Mandres, mais pressé par l'horaire, je bâcle le second vol et me classe 2 ème derrière... Jacques d'Orléans, le roi des Cacahuètes.

Ce sont les deux seuls concours disputés, mais je ne pensais pas que ce vieux taxi - 14 ans, c'est vieux pour un micro était encore "capable" de si bien voler, surtout avec un moteur caoutchouc, presque aussi âgé.

C'est donc à la demande de plusieurs modélistes, non habitués aux modèles légers que j'ai dessiné ce MICRO-SAINT-PAM, pour être un très bon modèle de début.

Des lignes simples, un fuselage aisé à construire et solide et une hélice pas trop gourmande en couple pour voler sûrement et le plus longtemps possible pour un DÉBUT.

CONSTRUCTION DU FUSELAGE

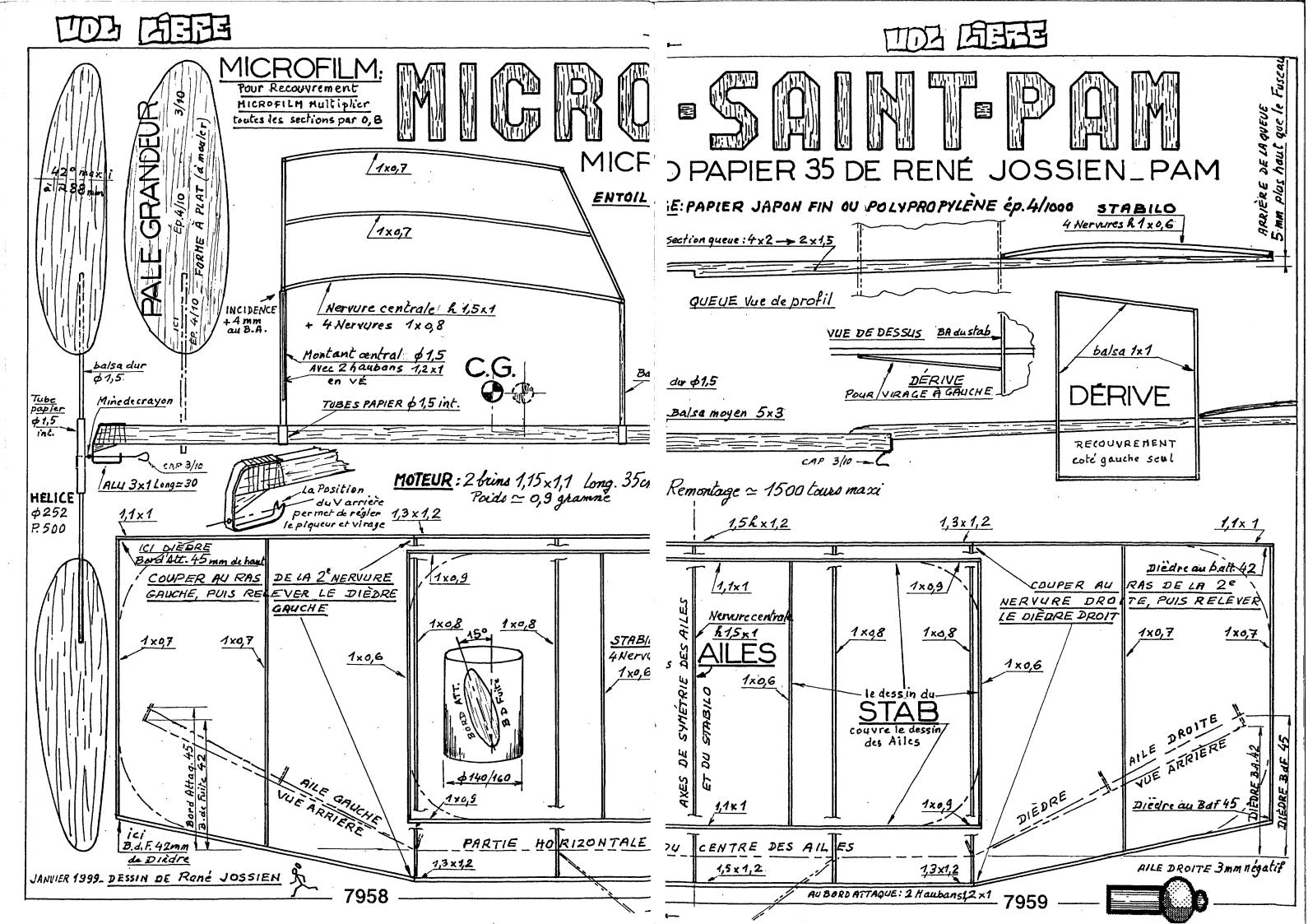
La poutre-moteur, est prise dans de la planche balsa, 30/10 demi-dur. Ou, prendre une belle baguette 6 x 3, et poncer sérieusement pour réduire la hauteur à 5 mm.

La queue porte-empennages, est prise dans de la planche balsa, plus tendre, de 20/10. On donne la forme du dessin, ayant 4 mm de hauteur à l'avant et 2 mm à l'arrière, celle-ci étant amincie à 1,5 mm d'épaisseur.

Contrôler que l'entaille avant, sur longueur 14 mm, s'adapte bien à l'arrière de la poutre-moteur, et que leur assemblage fasse que le haut de la queue soit à ≃5mm au dessus de la surface horizontale de collage.

Coller d'abord le crochet arrière réalisé en C.A.P. 3/10 - attache du moteur caout chouc - bien en appui sur le bout de la poutre, puis la queue porte-empennages.

Cela fait, on peut alors fixer le palier d'hélice, en alu de 1 mm d'épaisseur et 3 mm de largeur. La partie arrière est taillée en forme de Vé peu ouvert. Grâce à la position de l'axe d'hélice au fond de ce Vé, un peut régler le piqueur et le virage nécessaires au bon réglage de la traction.


Assurer la fixation du palier par quelques tours de fil à coudre, puis de colle cellulosique. Compléter par le petit gousset inférieur.

POSITIONNER LES AILES

Les deux tubes, en papier roulé, devant recevoir les 2 montants des ailes, seront à coller sur le flanc gauche de la poutre, à un endroit à déterminer, comme ci-après.

Après avoir monté tous les éléments du modèle: fuselage avec les empennages collés (stabilo et dérive) et l'hélice mise en place avec l'échèveau - celui-ci, un peu torsadé pour être tendu - on colle, à peu près à sa place, et avec deux morceaux de bande adhésive, les deux montants des ailes, ailes entièrement terminées, pour vérifier si le centre de gravité de l'ensemble, est bien situé à l'aplomb du point C.G. marqué sur le plan (environ 70 mm du Bord d'Attaque).

C'est là, une fois trouvée la juste position - en simulation - que l'on colle les deux tubes papier devant recevoir les montants des ailes, ceux-ci pouvant glisser dans leurs tubes, afin de varier les incidences lors des essais en vol.

Soigner le bon parallélisme du collage des deux tubes, dans les deux plans: vertical et longitudinal, en laissant en place 2 tiges, cap ø 1,5mm durant le séchage.

CONSTRUCTION DES AILES

Le plan des ailes est tracé pour permettre la construction à plat, les dièdres étant à prévoir, ensuite. Préserver le plan par un film plastique, afin d'éviter les collages entre bois et plan.

Les baguettes BA & BdF sont identiques et découpées dans de la planche balsa 12/10 dont la hauteur est plus importante en leurmilieu $(1,5 \times 1,2)$. A leurs extrémités, elles sont amincies $(à 1,2 \times 1)$.

Les nervures des ailes sont découpées dans de la planche balsa 8/10, exceptée la nervure centrale en 10 ou 12/10, et poncées à 7/10 pour celles des plans dièdre.

Soigner la découpe des nervures, en se guidant d'un gabarit en CTP 10/10 (ou en métal mince et bien plat) qui respecte la courbe des profils — ailes ou stabilo — gabarit que l'on fait glisser de la hauteur de la nervure prochaine.

ASSEMBLAGE ET TRUCS

Coller les nervures aux longerons (BA et BdF) avec une mini-goutte de vinylique diluée à 25 % d'eau... Les deux nervures qui terminent la partie centrale des ailes — celle qui reste horizontale — peuvent être inclinées vers le centre, d'un angle de ~13°, afin de faciliter le raccord des recouvrements (papier ou polypropylène) à la cassure du dièdre.

Afin d'obtenir un film ou papier qui respecte le mieux possible le profil des ailes, on peut coller deux fins fils nylon de Ø 6 à 8/100 (pêche) collés à 20 et 40 % de la corde, fils très légèrement tendus. Il est plus commode de mettre ces fils pour la partie centrale seule, puis répéter l'opération pour les deux bouts relevés.

Lors du collage des bouts "dièdre" et leur recouvrement, penser à respecter : les 3 mm de négatif à l'aile droite et les 3 mm de positif à l'aile gauche: hauteurs = 42 et 45mm, hauteurs des nervures extrèmes D & G.

LES EMPENNAGES

Le stabilisateur est construit comme la partie centrale des ailes. Mais, après avoir retiré les ailes du plan. « T'es fou, René !... Comme si quelqu'un aurait construit SUR les ailes !... » « J'en connais... mais chutt... je ne veux pas avoir de scène de ménage!... »

René ayant dessiné les deux plans des ailes et stabilo, au même endroit, il faut donc faire attention de ne pas confondre les nervures, quatre seulement pour le stab.

Les longerons de celui-ci sont amincis, en hauteur et largeur, aux extrémités. Quatre nervures identiques les rassemblent. On peut aussi coller un fil nylon, 6 à 8/100, collé à 40 % de la corde, avant le recouvrement en polypropylène 4 microns.

Je vous rappelle mon astuce, pour faciliter et améliorer le bon recouvrement avec du polypropylène. Il suffit de bien froisser plusieurs fois le film, puis le redresser le mieux possible, sur une feuille de papier épaisseur "courrier" — voire le presser entre les feuilles d'un grand livre durant quelques jours. Puis se servir de l'électricité statique, formée lors du frottement du film sur le papier qui attire ces deux matières entre elles : la rigidité de la feuille papier se transmet au film... Formidable !...

Quand je trouve des trucs pareils, je me demande pourquoi je suis resté KODESTE aussi longtemps. Gérard Killer, le Docteur Kaboul, va en faire une maladie... Hi hi!...

Pour la dérive, pas de problème... Du balsa 1 × 1, le plus tendre possible, à coller à la vinylique diluée, puis recouvrement du coté gauche, seul. Le coté droit sera pour fixer le plan vertical, un point de colle sur la queue, un point sur le stabilo, pour un virage à gauche.

LES MONTANTS D'AILES

Les montants d'ailes, ce sont les deux baguettes balsa dur de ø 1,5, qui relient les ailes...- Oui!... je sais les "deux" ailes sont d'une seule pièce; mais c'est un monoplan - ...qui relient les ailes au fuselage, et on va user du glissement de ces montants afin de démonter le modèle, pour le transport.

« Comment ?... Les baguettes rondes de ø 1,5 n'existent pas ?... Encore un truc!...»

Quand je construisais... "beaucoup" de modèles indoor, vers 1978-1987, j'ai eu une idée pour obtenir des baguettes cylindriques

J'ai pris un flanc de moteur de réveil en laiton (parce que j'avais ça sous la main et que ça ne rouille pas). Puis j'ai percé une série de trous: Ø 1,2 - 1,35 - 1,5 - 1,65 - 1,8 et 2... Sans ébavurer, c'est mieux.

Et, quand je veux une tige balsa ø 1,5 je découpe, dans le droit fil, une baguette carrée, de coté 1,5 ou 1,6, je ponce les angles et je passe la longueur dérirée, avec + 20 mm, dans plusieurs trous, du ø 2, à celui désiré. Et cela donne un rond suffisamment bien pour les montants et les tiges pied de pale d'hélice... Quel Génie !...

LES UTILES TUBES EN PAPIER

Comment faire?. Sur notre modèle, nous avons deux tubes papier collés sur le coté gauche de la poutre fuselage. Leur but, être la tenue des montants, avant et arrière, des ailes. Et permettre, grâce au glissement des montants, de varier l'angle d'attaque des ailes. Une fois notre appareil bien réglé, il est prudent de tracer, un petit trait, sur chaque montant, pour nous y retrouver à la prochaine sortie. Démontage des ailes possible, pour le transport.

Un autre tube fait partie de l'hélice.

Ces trois tubes papier étant de même diamètre intérieur = 1,5 mm, pourront être débités dans le même, à réaliser ainsi.

Sur une corde à piano de Ø 1,5, enrouler une bande de papier japon (ou papier
pelure) de la longueur nécessaire au tube,
plus (+) une dizaine de mm. Rouler ainsi,
successivement, 3 ou 4 tours, puis couper
l'excédent. Recommencer l'opération, mais
après avoir mis un peu de colle sur le
papier, sans en mettre sur le premier tour,
en contact avec la tige métallique. Faire
tourner, de temps en temps, la CAP dans le
tube, pour éviter le collage sur celle-ci...
Il ne reste plus, une fois le tube sec, de
débiter les trois longueurs nécessaires.

FABRICATION DE L'HÉLICE

Notre hélice est aussi munie d'un tube papier qui porte les deux pales dont le pas sera variable grâce à la rotation des pieds de pale. A l'avant, l'axe d'hélice est plié à angle droit, puis collé sur le tube par une goutte de colle cellulosique.

Mais il est plus commode de commencer l'axe d'hélice par le crochet d'attache du moteur. Puis essayer, sur le palier d'hélice en alu, si l'on peut monter l'axe d'hélice en entrant, d'abord, la courbe du crochet, en pénétrant par l'avant. Voir ensuite, si l'on peut placer l'axe, dans le Vé arrière du palier. Cette manoeuvre permet de vérifier si l'hélice sera démontable et à quelle longueur mettre la perle (mine de crayon gras percée) et piquer le tube d'hélice, prévu ci-dessus.

Pour les pales, découper d'abord une forme en carton d'après dessin. Choisir la planche balsa la plus mince et la poncer à 4/10 d'épaisseur. Découper 2 pales d'après le carton. Poncer-les pour amincir les bords et le bout. Mouiller ces pales et les mettre en forme sur un gros cylindre avec inclinaison de 15:. Une fois bien sèches, on les colle sur les pieds de pale, comme le dessin. Sur le tube collé en bout d'axe, monter les pales avec un angle de 35 à 40°. Equilibrer.

| MONTAGE, ESSAI ET RÉGLAGE

Vérifier d'abord le bon montage des éléments. Les ailes montées avec les tubes papier, placés correctement pour respecter le centrage précisé sur le plan.

Le stabilisateur est collé sur la queue avec l'angle d'incidence prévue de construction (on peut toujours, par la suite, prévoir une petite cale, si nécessaire). On le souhaite bien horizontal, ou avec un petit air penché, mais alors, ce doit être le coté droit du stab, le plus bas (6mm).

Regarder bien de face pour vérifier si les ailes sont calées avec la correcte différence, c'est à dire, du positif à l'aile gauche (attention c'est celle que l'on voit à droite) et du négatif, de l'autre coté.

Lire avec attention comment observer pour vérifier si un modèle (quel qu'il soit) n'est pas déformé, les déformations étant la principale cause de difficultés de réglage; il faut soigner cette observation.

1º Regarder le modèle, <u>bien de face</u>, avec un seul oeil, l'autre étant fermé; c'est à dire que le milieu arrière du modèle, par exemple le BA de la dérive, doit être juste derrière le centre du nez, cela dans la ligne de visée.

2° En gardant toujours cette visée verticale, descendre l'arrière du modèle jusqu'à ce que l'on commence à voir peu du bord de fuite des ailes, en sa partie centrale. Stop.

3° Sans bouger la tête, seulement l'oeil et en comparant ce que l'on voit de quantité de dessous d'aile, pour la partie centrale, ici horizontale, on doit voir la même quantité des deux cotés (puisque ces deux parties sont à la même incidence). Pour ce modèle, s'il y a une petite différence, il vaut mieux que ce soit l'aile gauche, vue à droite, qui ait un petit peu plus d'incidence.

4° Continuer à faire pivoter l'arrière du modèle, en regardant à droite et à gauche toujours sans bouger la tête, jusqu'à apparition de plus de surface intrados de l'aile gauche, prouvant qu'il y a du positif, le négatif de l'aile droite apparait plus tard.

5° En continuant le pivotement du modèle, on peut vérifier le bon négatif du stabilo et son horizontalité (ou tilt).

Tout est bien. Mettre une centaine de tours de remontage. Raccrocher l'écheveau entre hélice et crochet. Tenir le modèle horizontal à hauteur d'épaule. Lâcher l'hélice puis le modèle sans poussée. Le modèle doit garder sensiblement l'horizontale, avec un léger virage à gauche. Ensuite, augmenter les tours en corrigeant virage et piqueur.

Bons vols...Le bon SAINT...René JOSSIEN

Profils d'aile pour Goupe-d'Miver.

Sollicité par nos amis des antipodes (de Tasmanie, pour ne rien vous cacher) VOL LIBRE a été heureux d'envoyer le papier qui suit... et qui peut-être ne vous laissera pas indifférents!

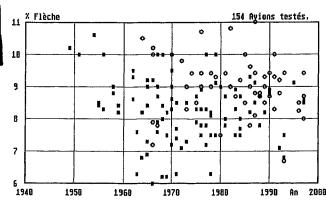
La formule "Coupe-d'Hiver" est née en 1938, mais n'a volé avec les caractéristiques actuelles qu'à partir de 1950 : 10 grammes de moteur, hélice repliable. Entre 1972 et 1985, dans plusieurs pays, la masse totale était portée à 100 grammes, mais ceci n'a eu aucune influence sur les profils, seule la surface de l'aile a légèrement augmenté (de même que le diamètre de l'hélice).

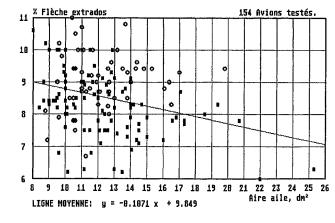
Au plané, un CH vole à un nombre de Reynolds (RN) de 30000 ou légèrement en-dessous. Les très grands modèles planent plus lentement,.. mais ont des cordes plus grandes... RN reste à 30000! Les grands allongements ont été essayés, mais sans succès notable.

On peut donc imaginer que le faible RN exigera des profils toujours minces, et souvent peu cambrés. L'histoire nous contredit. Le tableau I décrit la courbure maximale de l'extrados (plus exactement : la distance entre la ligne tangente à l'intrados et la ligne tangente à l'extrados) pour quelques 150 modèles champions. Cette courbure est - en théorie - tout-à-fait critique pour la qualité d'un profil. Or sur nos CH elle va de 6% à 11%. Si c'était une simple question de "mode", on verrait des tendances selon les années. La seule différence perceptible sur le tableau concerne la nationalité des modèles : les modèles français ont en moyenne 8.25% d'extrados, l'ensemble des autres modèles montrent une moyenne de 9.05%.

Comment sont possibles des différences de 6 à 11%? Une caractéristique des modèles CH est la structure de l'aile: 95% des avions ont un entoilage papier (ou plastique) sur nervures et longerons, souvent des longerons multiples. Les 5 autres pour-cent: tout-balsa Jedelsky, ou bien coffrage du 1/3 avant de l'extrados. Il existe donc presque toujours une très forte turbulation: angle vif sur le bord d'attaque, longerons à fleur d'extrados, retombée du papier entre les nervures. Les turbulateurs 2D collés sur

l'extrados sont très rares - ils seront peut-être utiles sur les nouveaux modèles à D-box carbone. Un seul modèle, semble-t-il, a volé avec un fil de pré-turbulence (TD comme pour le Göttingen 803).


Revenons aux extrados "moyens". 8.25% correspond à des profils connus comme le B 6405b et le Gö 362. Et


Revenons aux extrados "moyens". 8.25% correspond à des profils connus comme le B 6405b et le Gö 362. Et 9.05% fait penser aux NACA 6306, Gö 361, AH-6407, B 6356b, MVA 123. Les profils de CH ont presque toujours le maximum de la ligne médiane vers les 40%, et le tiers arrière du profil assez épais, pour des raisons de solidité. 8% des modèles ont un profil à intrados plat, avec une moyenne d'extrados de 7.3%. En France, le profil USA5 est devenu un mythe, utilisé jusqu'à nos jours par les experts, en dessin original ou modifié de mille façons : extrados de 8.3%, le bord de fuite posé "à plat" facilite la construction et délivre un coefficient de moment Cm_{0.25} assez faible (la stabilité du modèle requiert alors un empennage horizontal plus petit).

Il existe des raisons classiques aux valeurs très diverses des extrados. Si l'on recherche un beau plané plutôt qu'une grimpée rapide, on augmentera la cambrure. Si l'on vole par temps calme, on risque moins les décrochements du flux d'air à l'extrados, on pourra agrandir le bombé. Si l'on a un très grand modèle, les moments d'inertie font durer plus longtemps les séjours dans les angles d'attaque dangereux : il faut diminuer l'extrados. Si l'on vole par thermique en plein jour, on fera moins attention à la performance absolue, et davantage à la sécurité : extrados moins développé... Le tableau Il indique nettement les besoins spécifiques des modèles surnommés "géants" - peu importe leur durée moteur, 50 ou 120 secondes. Une suggestion : transformez donc la droite "moyenne" du tableau en une courbe qui prendra mieux en compte les grandes surfaces.

Pour l'intrados, on est limité par les besoins de la grimpée : moins creux pour les très grandes vitesses (disons : en-dessous de 25 secondes moteur), avec nez légèrement relevé (Phillips entry). On fera attention aussi à la solidité nécessaire. Une épaisseur de profil de 5% est encore suffisante sur une aile de 11 dm² en balsa et pin. 6%, c'est déjà du luxe!

Paolo VITTORI, champion d'Italie 1969, écrit à propos de son modèle "Champion 67 : J'ai construit 5 ailes avec divers profils. Les premiers étaient des variations du NACA 6409 bien connu, ou encore de plans-convexes. Mais si les modèles marchaient bien dans le vent fort, en air calme ils n'avançaient plus, et c'est peu dire. Ils planaient à faible vitesse, et quand ils étaient pris dans une descendance (à laquelle les CH sont très sensibles) ils se la faisaient totalement, jusqu'au sol comme une brique. Le profil développé finalement a donné d'excellents résultats. Il est plutôt mince, et peu cambré. (f/c = 4.2% à 38%, t/c = 6.3% à 40%, bord d'attaque 5×4 mm, longeron d'extrados 5×2 à 32 %, 25 mm entre les nervures).

GOURE D'HAVER GG

ET DIEU CREA LA FEMME

. . . .

Pour quoi faire?

Maintenant nous en avons la certitude : POUR GAGNER LA COUPE D'HIVER!

La preuve : 120 concurrents inscrits . Parmi eux TROIS COUPE D'HIVER femelles, et , pour le première fois dans les annales , la Reine _mère Danielle s'est permis de battre de 67' Gérard Marquois second .

Le miracle existe en VOL LIBRE . Les témoins , fort nombreux ont pu assister à la naissance de STE Danielle et nous espérons devant ces preuves , que beaucoup d'athées se convertiront au VOL LIBRE .

Le SAINT va devoir partager son nuage

Le gouvernement , prévenu , a déclaré l'année 1999 ANNEE DE LA FEMME .

Les hommes ont appris à faire la vaissellle.

Des écoles de VOL LIBRE sont en cours de construction dans le monde entier.

Bientôt internet sera enfoncé par "VOL LIBRE " qui ne publiera pratiquement plus que les plans des modèles de la grande praêtresse.

des hordes de demoisellles sont signalées un peu partout ,qui envahissent les terrains de football pour y essayer des " COUPES D'HIVER ".

Le Ministère de l'environnement , féminin lui aussi , a débloqué des crédits d'urgence pour acheter des terrains réservés au VOL LIBRE . Le premier a été inauguré le 14 mars 99 - par Madame leMinistre en présence de STE Danielle et portera son nom .

Philippe LEPAGE

CLASSEMENT de la 14ème COUPE d'HIVER M.BAYET : Modèles Modernes et F1G

Immat.	Nom et prénoms	Association	No licence	1er Vol	2ème Vol	3èmè Vol	4èmè Vol	5èmè Vo	Total	Place
68115	Templier Danielle	P.A.M.	9101054	120		120	******	Dame	586	1
7747	Marquois Gérard	V.L.Moncontour	9103631	120	120	120	159		519	2
	Hipperson Dave	Anglais		120	120	120	135		495	3
7702	Dupuis Louis	V.L.Moncontour	8505031	120		120	132		492	4
68148	Marrot Pierre	P.A.M.	9801272	120	120	120	124		484	5
7765	Morandini Stephane	V.L.Moncontour	9203561	120	120	120	117		477	6
698019	Michaud Bernard	S.A.M.	9805923	120	120	120	105		465	7
6866	Galichet Antoine	P.A.M.	8407703	120	120	120	95		455	8
	Evatt Michael	Anglais		120	120	120	87		447	9
	Evatt Michael	Anglais		120	120	120			360	10
	Hipperson Dave	Anglais		120	120	116			356	11
6802	Rennesson André	P.A.M.	9009051	120	114	120		***************	354	12
68115	Templier Danielle	P.A.M.	9101054	112	120	120		Dame	352	13
767172	Bohic Jean	A.M.C.Y.	9205372	120	108	120			348	14
	Cox William	Anglais		113	114	120			347	15
68148	Marrot Pierre	P.A.M.	9801272	105	120	120			345	16
	Challis E.Lewis	Anglais		104	120	120			344	17
6866	Templier P.Olivier	P.A.M.	9101055	120	120	104			344	17
7788	Marquois Benjamin	V.L.Moncontour	9302663	110	113	120			343	19
6874	Landeau Alain	P.A.M.	8407704	120	100	120			340	20
6895	Méritte André	P.A.M.	8807074	120	120	93			333	21
6868	Templier J.Daniel	P.A.M.	9901551	120	89	120			329	22
	Beales David	Anglais		120	102	105		Aile basse	327	23
6866	Galichet Antoine	P.A.M.	8407703	87	120	120			327	23
6868	Templier J.Daniel	P.A.M.	9901551	86	120	120			326	25
69819	Michaud Bernard	S.A.M.	9805923	85	115	120			320	26
7751	Brand Bernard	V.L.Moncontour	8505028	120	120	80			320	26
6802	Rennesson André	P.A.M.	9009051	101	120	94			315	28
92714	Binet Claude	C.A.Brayon	9201634	113	91	108			312	29
68239	Weber Claude	P.A.M.	8407712	106	120	83			309	30
533058	Garrigou Roger	M.C.Revel	9302003	85	120	104			309	30
53358	Garrigou Roger	M.C.Revel	9302003	83	120	104			307	32
	Beissac J.Pierre	4 A	8602323	120	120	66			306	33
6871	Lepage Philippe	P.A.M.	8407707	114	99	93			306	33
	Oldridge R.	Anglais		65	120	120			305	35
767172	Bohic Jean	A.M.C.Y.	9203372	93	85	118			296	36
767-	Boucrelle Henri	A.M.C.Y.	9107722	59	120	115			294	37
6863	Lusicic Charles	P.A.M.	8602042	120	93	78			291	38
7751	Brand Bernard	V.L.Moncontour	8505028	120	105	65			290	39
[******************************	V.L.Moncontour	9203561	95	59	120			274	40
17818	Castaing Michel	Goélands Montr.	9501544	94	94	845			273	41

6871	Lepage Philippe	P.A.M.	8407707	94	82	97		273	41
698016	Monnier Bernard	S.A.M.	9502731	93	68	112		273	41
955100	Grégoire Laurent	A.M.C.H.	8805725	52	90	118		260	44
698-	Bodet Sylvain	S.A.M.	9507521	90	48	120	Cadet	258	45
6886	Djian Michel	P.A.M.	9801280	87	48	120		255	46
9588	Blanleuil Jean	A.M.Romorantin	9707811	67	120	64		251	47
6863	Lusicic Charles	P.A.M.	8602042	120	90	40		250	48
7788	Marquois Benjamin	V.L.Moncontour	9302663	120	70	57	Cadet	247	49
68220	Adjadj Lucien	P.A.M.	9901559	105	58	74		237	50
56637	Fillon Emmanuel	M.A.C.N.S.E.	8902454	77	92	62		231	51
	Beales David	Anglais		81	99	50		230	52
9007	Fournier J.Marie	C.A.M.	9305801	74	107	45	j	226	53
7753	Axworthy Timothy	V.L.Moncontour	9706404	49	69	97		215	54
6838	Lapierre Philippe	P.A.M.	8407706	72	81	56		209	55
56637	Fillon Emmanuel	M.A.C.N.S.E.	8902454	82	57	69		208	56
43741	Beissac J.Pierre	4 A	8602323	76	76	53		205	57
194119	Debard Julien	U.A.Orléans		55	46	100		201	58
7712	Dupuis Claude	V.L.Moncontour	8505030	92	57	50	Dame	199	59
	Michel Peter	Anglais		99	84	14		197	60
76701	Menget Christian	A.M.C.Y.	8407615	65	62	62		189	61
	Colin Stéphane	Wissous Mod.	9602073	120	66			186	62
9007	Fournier J.Marie	C.A.M.	9305801	92	51	40		183	63
780442	Aubry Yves	C.M.Beaumontois	8408597	25	24	120		169	64
698-	Bodet Sylvain	S.A.M.	9507521	61	58	50		169	64
194115	Burgot Laurent	U.A.O.V.L.C.M.		60	43	59	Junior	162	66
19420	Bonnot André	U.A.O.V.L.C.M.	8500915	54	44	51		149	67
698233	Uzureau Eugène	S.A.M	9105562	21	25	68		114	68
7753	Axworthy Timothy	V.L.Moncontour	9706404	41	70	3		114	68

mmatric.	Nom et prénoms	Association	N° licence	Vol 1	Vol 2	Vol 3	Vol 4	Vol 5	Total	Nom modèle	place
7702	Dupuis Louis	V.L.Moncontour	8505031	120	120	120	116		476	Zigolo	1
6802	Rennesson André	P.A.M.	9009051	120	120	120	92		452	Kim	2
68148	Marrot Pierre	P.A.M.	9801272	113	120	120			353	Jumping 2	3
	Challis E.Lewis	Anglais		120	104	120			344	Zigolo	4
7788	Marquois Benjamin	V.L.Moncontour	9302663	120	120	82	<u> </u>	Cadet	322	Zigolo	5
6895	Méritte André	P.A.M.	8807074	80	120	120			320	Machaon	6
6860	Templier P.Oli∨ier	P.A.M.	9101055	84	108	120			312	Babar	7
437 55	Levasseur Bernard	4 A	8602325	120	120	68	<u> </u>		308	Garap	8
6840	Templier J.Pierre	P.A.M.	8407711	65	120	120	<u></u>		305	Babar	Ç
7765	Morandini Stéphane	V.L.Moncontour	9203561	60	120	120			300	Zigolo	10
	Oldrige Rex	Anglais		93	101	101			295		11
69802	Dupin Pierre	S.A.M.	9502732	96	120	73			289	Mikado	12
	Michel Peter	Anglais		120	98	41			259	Ailbass	13
606	Colin Pascal	Wissous Mod.	9602072	88	120	49			257	Eros	14
43741	Beissac J.Pierre	4 A	8602323	81	69	87			237	Fuit 1	15
92714	Binet Claude	C.A.Brayon	9201634	51	120	66			237	Morisset 49	15
68220	Adjadj Lucien	P.A.M.	9901559	51	71	109			231	Eros	17
43741	Beissac J.Pierre	4 A	8602323	107	48	74			229	Fuit 3	18
533058	Garrigou Roger	M.C.Revel	9302003	58	86	76			220	Eros	19
92714	Binet Claude	C.A.Brayon	9201634	54	59	101			214	Ailbass 54	20
68148	Marrot Pierre	P.A.M.	9801272	95	104				199	Jumping2	21
17818	Castaing Michel	Goélands Montr.	9501544	37	78	81			196	Jump bis	22
***************************************	Menget Christian	A.M.C.Y.	8407615	47	82	55			184	Menget 52	23
4780	Cavezzale Gino	C.M.Beaumont	8408611	120		48			168	Kim	24
6802	Rennesson André	P.A.M.	9009051	67	89				156	Kim 51	25
7801442	Aubry Yves	C.M.Beaumont	8408597	63	41	51			155	Mikado	26
	Deur Claude	A.C.Cigognes	9307477	58	43	52			153	Morisset 49	27
56637	Fillon Emmanuel	M.A.C.Nice	8902454	51	39	60			150	Théo Landes	28
68239	Weber Claude	P.A.M.	8407712	75	47	27			149	Babar	29
19451	Delcroix Michel	U.A.O.	9903092	55	44	33			132	Eros	30
6886	Djian Michel	P.A.M.	9801280	60	67	4			131	Morisset 49	31
***************************************	Blanleuil Jean	A.M.C.Romorantin	9707811	23	45	52			120	Morisset	32
		S.A.M.	9502731	26	38	36]		<i>{</i>	Morisset 49	33

Coupe Maurice Bayet: Louis Dupuis, Vol Libre Moncontour.

Coupe Jacques Morisset: Danielle Templier, Paris Air Modèle.

Coupe Ailes basses René Jossien: David Beales Grande Bretagne.

Coupe des Jeunes: Benjamin Marquois Vol Libre Moncontour.

Challenge Inter-Club Création 39 Maurice Bayet: Paris Air Modèle.

Kleine Sender im Gelände gesucht

Usingen. Eine Neuigkeit setzt sich bei den Amateurfunkern immer mehr durch. Wer sich Gebühren und Prüfung sparen will, kann beim "Amateurfunkpeilen" mitmachen. Richtige Wettbewerbe für alle Altersgruppen gibt's. Im Gelände werden kleine Sender versteckt, die per Peilantenne gefunden werden müssen – natürlich ist auch Kondition gefragt, denn es geht über Stock und Stein. Ein Wettbewerb des Usinger Vereins ist für Samstag, 3. April, geplant. Ab 14 Uhr geht's am Hattsteinweiher, direkt am DLRG-Haus, los. Ganz genaue Informationen gibt Frank Hohmann als Jugendreferent des Usinger Ortsverbandes. Er ist unter (06081) 980100 zu erreichen. (bur)

TREITLIEGER SIND SEP WILT MEILFHWE YORANS D YMA (Caus

TALEBY T

JACQUES VALERY ist verstorben .

Die Nachricht vom Tod von Jacques VALERY hat uns zwar nicht überrascht, wir wusten ihn gezeichnet von einer sehr schweren Krankheit, aber Leid und Schwermut sind über uns gekommen.

FORTS . OBETH . RECHTS .

Und GOTT schuf die FRAU

Um was zu tun ? Jetzt wissen wir es genau . Um die COUPE d'Hiver zu

gewinnen!

Der Beweis, unter 120 eingetragenen Wettbewerber, nur drei weibliche, und zum ersten mal in den Analen, gewann Königin Mutter Danielle, und dies mit 67 s. vor Gérard Marquois.

Es gibt Wunder im Freiflug Es gibt Zeugen von der Geburt der heiligen Danielle, und wir hoffen über diesen Beweis Unglaübige zum Freiflug zu bekehren

Le SAINT * wird seine Wolke teilen müssen .

Die Regierung hatte es gewusst und hatte das Jahr 99 zum **Jahr Der Frau** erklärt . Die Männer haben das Abspülen gelernt!

Freiflugschulen sind in aller Welt im Bau. Bald wird Internet von VOL LIBRE überrollt werden, und nur noch Pläne von Modellen der GROSSPRIESTERIN Bringen.

Horden von Jungfrauen sind fast überall gesehen worden , die Fussballplätze stürmen um neue CH zu trimmen .

Der Umweltminister - eine Frau übrigens -, hatt schnellstens Kredite genehmigt um Freifluggelände zu kaufen . Dererste wurde am 14 März 99 durch Madame La Ministre freigegeben , in Anwesenhait der Heiligen Danielle und wird in Zukunft seinen Namen tragen .

* Le SAINT = René Jossien der sich diesen Namen zugefügt hat, da er glaubt ein Halbgott zu sein .

7965

Jacques war einer von denen die nur , ausser der Familie , für die Flugwelt gelebt haben . Pilot von Beruf , mit abertausenden Flugstunden , Berater und Fluglehrer bis zuletzt bei

Flugstunden, Berater und Fluglehrer bis zuletzt bei der AEROSPATIALE in Toulouse, fand er noch Zeit sich dem Modellfugbau zu wittmen: Fesselflug und Freiflug.

Er war ein Perfektionnist im Bau seiner Modelle , er war begabt um immer wieder in Theorie und Praxis Neuheiten einzubringen . Seine Modelle waren eigensinnig und geprägt von seiner Person . Man konnte sie mit keinen anderen verwechseln .

Aber was uns besonders beeindruckte war seine Person . Diskret und und wirksam auf allen Gebieten in der Bearbeitung von Sachen und Dingen , sowie in der Führung von Personen .

Er war im Vorstand der FFAM, Leiter der Komission Freiflug, und mehrmals Teamchef auf W.M und E.M in F1A und F1E. Immer gelassen und verständnissvoll leitete er seine Aufgaben. Talent in Musik und Fotografieren rundete seine Persönlichkeit auf schöne Art ab.

Ohne Zweifel wird der zu frühe Tod von Jacques ein sehr grosses Loch , in der kleinen Welt des Freiflugs in Frankreich hinterlerlassen .

Von den "Landes "
wo Du Familie und Haus
aufgebaut hattest , unter
wiegenden Fichten , bis
zum Elsass wo Du auch
einige Wurzeln geschlagen
hattest weinen unser
Herzen .

Salut Jacques .

ELLA AMENIGER

Etwas über F1A für Anfänger

P. PETRUSEK

Herr Wöbeking macht aus uns allen nur Narren, oder nicht?! Ich denke schon. Erstmals hatte ich seinen Namen beim spezielem Höhenruder-profil gelesen. Gail Cheesman hat dieses Profil aber schon in den 50er veröffentlicht. Na ja, nich so schlimm, da es ja um nichts geht.

Eine weitere Schöpfung von Herr Wöbeking: der Flipper, das bleibt mir aber die Luft weg! So etwas! Fliegen tuts bestimmt, hoffentlich auch das Maximum, wenn man es in einen starken Bärt setzt. Als 1. Aprilscherz ist es wunderbar, aber wahrscheinlich an sonsten nicht.

Was mir aber vollkommend die Luft weggejagt hat, war das Modell "Andy 97", genau gesagt, das verwedete Flügelprofil. Seine Dicke, ermöglicht ganz sicher keine enorme Startüberhöhung, wie er es schreibt. Auch die Leistung im Gleitflug, 3 min. bei der Einstelung für die Turbulenz, und 3.30 min bei ruhiger Luft wäre gerne erwünst, auch bei Modellen mit normalem Profil, und etwas grösserem Flügelstreckung.

Über die Werwendbarkeit von Profilen mit kleinem, oder sogar gar keinem Nasenradius, kann man durchhaus diskutieren.

Schon seit langem hat sich der Modellprofilpapst Herr György Benedek über dies abstosend geäussert. Der Einfluss an der Längsstabilität ist eindeutig schlecht. Erich Jedelsky empfhiehlt kleine Radien nur bei kleinen Reynolds-zahlen. Koster kann sich sicher zu diese Thema äussern aus eigene Erfahrung. Hans Gremmer sagt dazu:

"Die raschere Zunahme des Auftriebes bei spitznasigen Profilen ist mit der Entstehung von Saugspitzen erklärlich, verursacht durch die mit Wiederstand erzwungene Beschleunigung der Strömung um die Nase. Diese Saugspitzen bedingen aber auch ein früheres Abreisen der Strömung. Bei rundnasigen Profilen ist die Auftriebverteilung auf der Oberseite wesentlich harmonischer."

Ich kann mich auch irren, aber Andy wäre dankbar, würde ihm jemand B-8556-b, NACA 6409, NACA 25-1-10, Epler-385 oder ähnliches geben. An sonsten, wen Herr A.J. Crisp das Profil für FLYRIGHT gezeichnet hat, hat er sich zuerst sicher das Profil B-8556-b mindestens kurz angeschaut.

Interesant ist auch die Aversion gegen Kompositen. Es ist wahr, dass dies für Anfänger nicht geeignet ist, mit D-Box usw.

Man kann dies aber anders knacken. Nehmen Sie ein Kohlerohr 8/6 und überlaminieren Sie ihn mit einem Kohleschlauch von R&G oder Einck. Sie erhalten einen Holm, der die Festigkeit und Steifigkeit vollkomend erfüllt. Die Formstabilität ist auch ausgezeichnet. Also, brauchen sie auch gar keinen Transporthelling aus 12x12 Balsaleisten, welche sowieso zu schwach sind.

Die, welche höhere Anforderungen haben, können das Kohlerohr kegelformig abdrehen bis zu eine Wanddicke 0,3 mm, oder stufenweise abbohren.

Weitere Möglichkeiten bietet Firma AVIA, welche kegelformige Rohre liefern, für den Drachenbau. Alles andere kann man aus Balsa und Sperholz machen, der Bau geht auserordentlich schnell.

Falls ich mich in irgendeinem Punkt irren sollte, bitte ich Herrn G. Wöbeking herzlichst um Entschuldigung.

HERMENEGBLDO

HERMENEGILDO das Schwergewicht.

MÄRCHEN

Herme - so nannten ihn seine Freunde - war ein heisser Verfechterr der Klasse Peanuts .

Er baute ein Modell nach dem anderen , mit Schwung , und ignorierte zugleich die Grundregeln , wie zum Beispiel , nur die nötigsten Materien zu benützen .

Er erreichte dadurch Gewichte die ausser Mass gerieten ... 25 Gramm .

Dadurch lagen seine Flugzeiten um die 1 Sekunde herum, und die Geschwindigkeit war die von einem EXOCET, und nicht die von einem Flugmodell. Seine totale Ignoranz von den kinetischen Kräften mobiler Gegenstände... brachten beim Anstoss irgend eines Hindernisses den fatalen Bruch Dies alles brachte es dazu, dass einige gutwillige Kollegen HERMENGILDO den Spitznamen SCHWERGEWICHT gaben

Die weiter Erfahrung und die wiederholten Brüche der Flüge, brachen ihn dazu, zu überlegen ob dies nicht alles die Ursache in dem Übergewicht der Modelle Lag. Und dies war schon eine grosser Schritt vorwärts.

Er hatte schon in einem Katalog von AERO CENTER gelesen dass es ein künstliches Material gebe , dass genau so solide wie Balsa sei , mit einer sehr niedrigen spezifieschen Masse.

Er las nicht lange weiter. Schrieb sich Name und Adresse auf. Und durch das allgemeine Wunder der schnellen Post hatte er 15 Tage später, ein ganze Menge von Material um Modelle zu bauen.

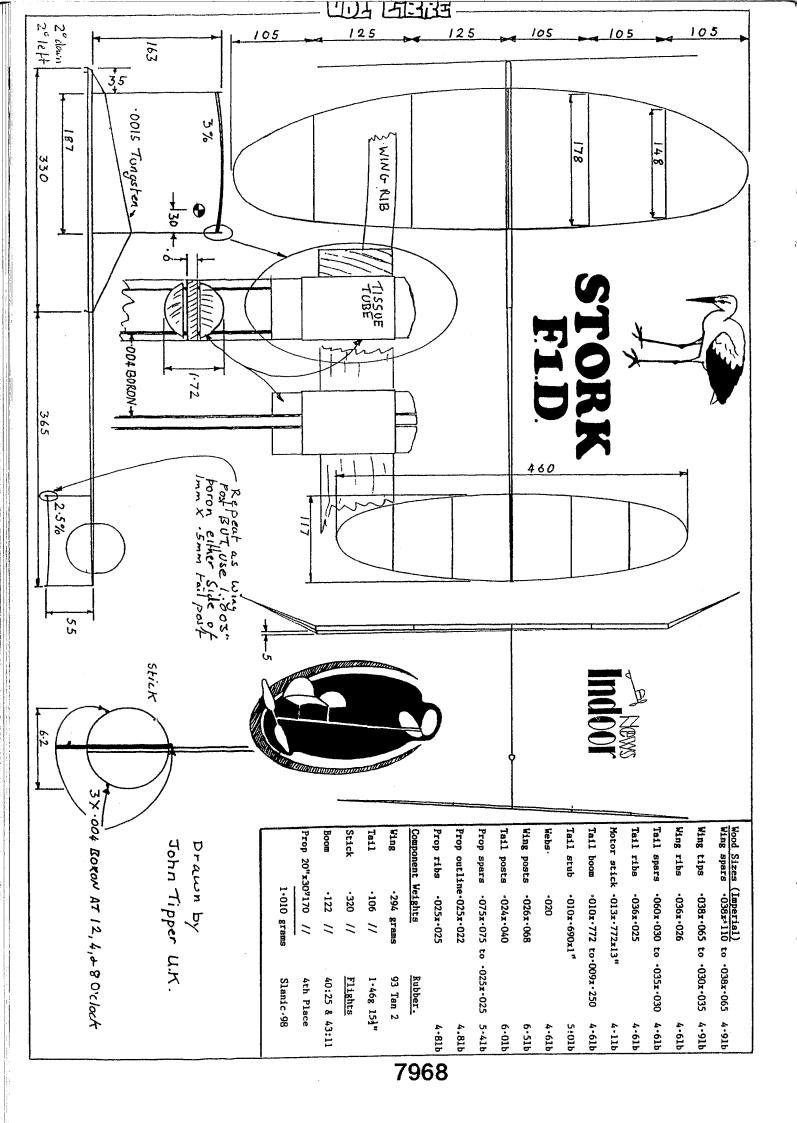
Er musste nur noch das passende
Flugzeug finden ... seine Auswahl fiel auf
eine britische SES Maschine aus dem 1
Weltkrieg . Da hatte er einen sehr
schönen Plan mit den kleinsten Detail's.
Er kaufte sich auch zum ersten mal , eine
Präzisionswaage , mit der er alle Teile
woog .

Er war sehr überrascht über die greingen Massen: Flügel 0,40 Gramm, Rumpf 0,35 Gramm, Höhenleitwerk 0,10 u.s.w.... gesammt 2,5 Gramm. Dazu kam der Gummimotor 1 X 1 mit einem Gramm und einer Gesammtdrehzahl von 3500 Drehungen und dazu noch eine schöne Reserve.

HERMENEGILDO war euphorisch .. er spürte dass er eine strategische Waffe in der Hand hatte, für den nächsten Wettbewerb. Da war doch die nächste nationale Meisterschaft in den kommenden Tagen .

An jenem Tag traf er in der Halle, mit seiner Wunderwaffe, in einer schönen Kartonbox gebettet, ein. Er würde sie nur im letzten Moment öffnen.

In den Stunden die seinem Einsatz vorgingen , lebte er mit "schnellem Herzen "un mit der Genugtung zu wissen welch Staunen er erregen wird unter den Zuschauren und Wettbewerber, mit seinem makellosen Doppeldecker!


Der Moment kam wo die Lautsprecher seinen Namen aufriefenmit gemässigtem Schritt ging er auf das Zentrum der Halle zu . Ging auffällig langsam zu Boden um sein wertvolles Modell für den Flug vorzubereiten . 3500 Drehungen, das Flugzeug legt einen Idealstart vor und begann , mit angemessener Spiralflug . Alles Geschwindigkeit ausgezeichneter Weise . . Bei jeder Spirale empfand HERMENGILDO in sich ein teuflisches Wohlgefühl denen gegenüber die ihn immer gehänselt hatten - er hattevorher so ein gewisses Minderwertigkeitsgefühl .

Die Zeit war gekommen diese ldioten ins Staunen zu versetzen , mit offenem Munde , drei Minuten lang

Das Gehirn von HERMENEGILDO lief im gleichen Kreis wie die Luftschraube von seinem Doppeldecker. Bei der dritten Schleife, man war bei einer Flugzeit von 1' 30", kam das Modell in die Nähe einer Beleuchtungsbatterie, dies war der Moment um ein leuchtendes Foto zu machen Es war das Foto des

7966

longitudinal Phénomena

J. Wantzenriether

An old article from the Viennese master Erich Jedelsky will allow us to define various functions of the tail-plane and its airfoil section. It is a fact that sometimes certain phenomena surprise us and that, in desperation, we finish up saying, for example:

'Suppose I tried the airfoil upside down?'...
Not so quickly.amigo!

A propos that steady nose-dive Erich Jedelsky (* 1959)

Sometimes in aeromodelling we come across the following phenomenon: a model has successfully completed a number of normal flights and suddenly it goes into a prolonged nose-dive, terminated only by contact with the ground. If the model is circling at the same time, dive and turn combine (in a 'committed spiral' as we sometimes say, inappropriately, in French-JW)We shall see that the dive is triggered by the model's finding itself either in a power-burst, or in flight at a low angle of attack. The latter can be the result of a gust of wind, for example, during the normal glide, or other losses of speed; a very tight turn, or simply flight under power. It will always be possible to avoid further dives by increasing the longitudinal dihedral - i.e. by increasing the difference of incidence between the wing and the tailplane. So much for our experience - now some thoughts to which it gives rise.

Observation of a nose-dive conjures up the picture of a procedure gone into reverse. Normally, with a reduction in the angle of attack and the increase in speed which follows it, the excess speed is converted, after the model has reared up, into an increase in the angle of attack. Conversely, in a prolonged dive the increased speed leads to a further reduction in the angle of attack and a further increase in speed, continuing until a new, stabilised trajectory is established - the one that culminates in a 'pile-in'. The nose-dive

brings us into a special area in the realm of longitudinal stability.

The areas and the moment arms of the wing and the tailplane have not changed. So the cause of the disruption in the balance of the moments must be sought in the actual <u>lifts</u> created, especially that of the tailplane, which is very effective because of its long moment arm.

Inversions of lift often occur in aeromodelling when critical conditions are encountered. So it will be suggested that the nose-dive is explained by the sudden re-attachment to the tailplane's upper surface of the previously separated airflow; this re-attachment would provide a surfeit of lift to the tailplane and thus a diving motion to the model. If we referred to current practice, this is what we should find...

Imagine an A/2 glider with a cambered wing section, for example Göttingen 417, and having a tailplane section with a cambered median and a 9% upper surface. The angle of the wing is 0 degrees and so, too, is that of the tailplane. So the longitudinal dihedral is 0 degrees. If we trim this glider to its minimum sinking speed, the wing will fly at its optimal angle of attack of just over 5 degrees, an angle which avoids both turbulence on the lower surface and separation at the rear of the upper surface. As there is no longitudinal dihedral, and if we take into account a down-wash of 1 degree behind the wing, the tailplane finds itself at 4 degrees, or a little more, to the airflow.

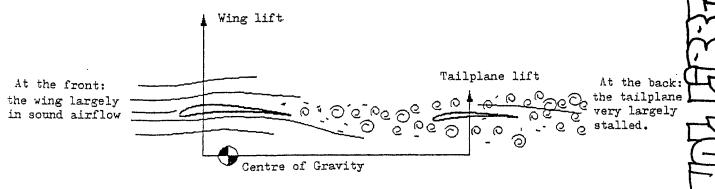
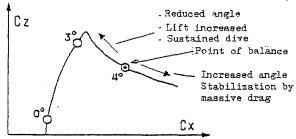
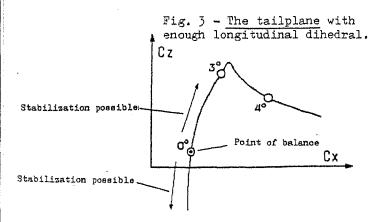



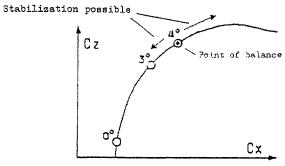
Fig. 1 - Balance of moments-with too little longitudinal dihedral


四四 图333

Generally speaking, tailplanes have a much smaller chord and, therefore, a smaller Reynolds Number than wings and they work in the turbulent wake behind the wing. We can therefore expect that at this angle of attack of 4 degrees. the upper surface of the stab is flying under the influence of a separated airflow. The balance of the longitudinal moments therefore comes about as a result of the following circumstances around the two moment arms: at the front, with a short moment arm, the strong wing-lift in a largely sound airflow; at the back, with a long moment arm, the weak tailplane lift, in a separated airflow (fig. 1). If a gust puts the model into a sudden nose-up, nothing dangerous will happen. At the wing, which is already flying near its Clmax, the airflow starts to break away, which reduces the force acting on the front moment arm; the tailplane, now also at a more positive angle to the airflow, will obviously not be able to produce more lift - only a lot of drag. The two moments thus created produce a righting action, with a return to a normal attitude.

Fig. 2 - The tailplane with too little longitudinal dihedral

It will be different if a disturbance keeps the model for quite a time and quite firmly at a reduced angle of attack. The force of the wing-lift, at the end of the front moment arm, is reduced; on the rear moment arm, the tail-plane not only cannot react to this, but because it is also at an angle of attack of less than 4 degrees, finds its upper surface airflow re-attached. So the tailplane does not produce less lift than on the normal glide, but considerably more, which is translated into a decisive diving moment. The model



gradually accelerates, until the fatal trajectory is attained: the model hits the ground at a steep and steady angle (fig. 2).

This explains, for example, the alarming display of a nose-diving glider, which, if it does not break up on hitting the ground, can bounce up and continue gliding as if nothing had happened. That was a speciality of the 'Wolkensegler' design. The brush with the ground had cut the excess speed, so the tail-plane returned to its separated airflow state and the conditions for normal flight were restored.

The dive problem can thus be easily cured in our example, if we increase the longitudinal dihedral to some 4 degrees. The wing can be set at + 4 degrees and the stab at zero, or the wing can be at zero with the stab at -4 degrees, or any other appropriate combination which we may choose. Thus, when the wing is gliding at +5 degrees, the stab is flying at zero (or 1 degree). If the model now goes nose-up, the stabilizer is going to deliver a great increase in lift, up to the Clmax it can achieve. If, conversely, the model dives at a low angle of attack, the stab will come under negative attack. will deliver a downwards force and will right the the model (fig. 3). The dangerous hysteresis to which the stab section can be subject no longer comes into play.

Fig. 4 - The tailplane with a split section.

This basic interpretation of nose-dive phenomena explains very well various other familiar aspects. Thus, a more cambered tail-plane section calls for a greater longitudinal dihedral; because such a section gives rise to a separation of the upper-surface airflow from lower angles of attack.

Similarly, recent experiments with tailplane split sections are also clarified: the model refuses to dive even with zero longitudinal dihedral. In fact, a split section is much better equipped, thanks to its internal circulation, against premature separations. We see that in its high Clmax values and in the absence of a break in the outline of its polar. Its airflow is still 'sound' at more than 5 degrees of attack in a turbulent wake. It can create more supplementary lift, upwards or downwards, and thus produce proper righting moments, and no longer 'reversed' ones (fig.4).

Today's air

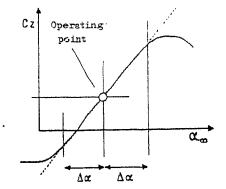
If your curiosity has prompted you to read also the extracts by SCHÄFFLER and WAINFAIN,

you will have noted the progress - both in terms of explanation and practical implications.

Some typical combinations of CG and tailplane

(A negative moment arm shows that the CG is in front of the wing's Centre of pressure, situated at 35% of the MMAN chord)

	Wing area	Front MA	Stab area	Rear MA	cg/Mc	Stab section	Stab Cl
Alexandra 23 Holzleitner, VL 111	29,8 dm ²	16 mm	4,13 dm ²	748	48 %	5% flat base	0,17
King's Alr Wöbbeking, BAS 3/85	29,50	25	4,42	814	53 %	W. 9 %	0,22
Grünschnabel Wilkening, TS 3/89	30,80	-1	3,20	738	34 %	Flat plate	-0,01
Greenhorn Butty, Aeromod.4/79	29,94	-36	2,01	925	25 %	417a reversed	-0,64

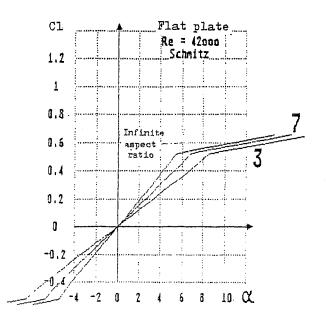

Thus, the 9% tailplane section is no longer used today; in glider, as in rubber, we have developed the fast flight phase, the catapult launch or the power-burst, and so have tried to find tailplanes giving less drag. We have also given up, in glider, CG positions further back than 60% and are coming round to the same approach in rubber - whilst in the '50s 75% CGs were fashionable. We have come to understand better, thanks to the research around the Neutral Point, the interplay of the longitudinal moments of the wing and the tailplane. The wake behind the wing has become something manageable. Finally, experience (especially of the bad kind) has caused us in turn to adopt and then abandon various types of tailplane, including several sorts of curved plates and of their splitsection consins.

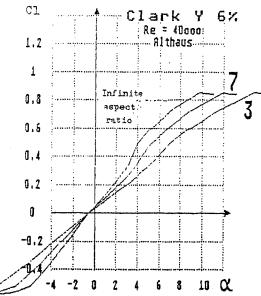
On the glide, in calm conditions, the working Cl of the stab is easily calculated from the equality of the moments -

(Area × Cl×MA) wing = (Area × Cl×MA) stab (where MA = moment arm.)

Let's do this calculation for a few typical F1A gliders, taking the Cl of the wing to be 1.1... we find that, on average, a 'normal' glider flies with a Cl of 0.20 on the tail—plane. The more we bring the CG forward, the nearer we get to Cl=0, which is reached with a CG at 55% (please bear in mind the difference between the root chord and the MEAN chord of the wing). With a CG forward of 35% the stab must provide a downwards force; hence the interest in 'turning over' the aerofoil section. (For BUTTY's glider, if we take the CG to be 25% of the MEAN chord, and not the overall figure shown on the plan, we get a tailplane Cl of -0.44, a more logical value).

A small digression on the way a stab works in rough weather, worked out by Rainer HOFSASS in VL 56.. At the worst moments of a model's stall, with the wing pushed to +20 degrees, the tailplane varies from its usual angle of attack by only 2 degrees (more or less). Astonishing ... but very useful to know. So a tailplane section


At the time when I was struggling in vain to improve the poor longitudinal stability of A/1 models nos. 1 and 2, I tried to calculate — just a few days before chancing upon Beuermann's work — the lift coefficient of tailplanes, with the aim of checking their working Cl..The outcome put me largely on the right track. The CG was around 50% of the wing chord; the Cl of the tailplanes worked out at 0.1 or 0.15, which was too low for curved plate sections such as HWP1. I then thought that the stability had to be spoton when the tailplane was operating in about the middle of the linear part of the polar and had,


in both directions, a range of angles of attack with sound, unseparated airflow ($\Delta \propto$). So, I should have moved the CG back or reduced the area of the tailplanes. This was exactly the result which subsequently emerged from calculations along Beuermann lines. The flights that followed proved confirmatory.

After having calculated the Neutral Point and the CG, we should always check that the stab is operating right in the middle of its effective range; this increases the chances of achieving good longitudinal stability. The converse conclusion, however, is not always correct. A well-chosen operating point does not always provide good stability, as the example of the glider with a symmetrical section will prove. Here the CG is placed on the wing's centre of pressure (at about 35%), so the stab is flying with a Cl of O and consequently has a maximal useful range on each side of this point; this model can sometimes be stable, but can also pitch unrestrainedly and remain unusable unless the CG is moved back or the tailplane made smaller. So we shall use the Cl calculation only to complement the Neutral Point ones(..) Arthur SCHAFFLER

does not need to go up to very dangerous Cl values. It does not need to be extremely convex.. If you have tried it, you will have seen, too, that a Wake centered at 75% makes do very well with a 'flat plate' section, even in normally windy weather.

The graphs below give you the useful ranges for two standard sections. The 'linear' part for the 6% Clark Y goes from - 7 degrees to +13 degrees. Probably a little less, in fact, because the Reynolds No. will be lower for us, in the 30,000s for F1A. The middle of the linear part corresponds to a Cl of 0.18 and this underlines the wise choice made by World Champion HOLZLEITNER of a 5% flat-bottomed section.

If we go to the assymetrically bi-convex Göttingen 795 - 8% thick, with a 6% top surface - we are touching on the sub-critical field for the air-flow, according to Althaus' and Muesmann's polars. Perhaps our structures. which are far from the smoothness of windtunnel test pieces, will still give us an attached airflow. But already we are toying with the unpredictable.

R. HOFSASS built three identical 'Espadas', but had to test the tailplanes carefully and finally found himself with three different stab sections. Though all thin, standard ones.

(..) the two factors causing the airplane to be unstable and divergent(*) at low angles of attack are the premature stall of the lower surface of the tail and the destabilizing effect of placing the center of gravity behind the 25% chord of the wing.

In general, moving the center of gravity far enough forward to eliminate divergence will result in an unacceptable increase in tail size and trim drag for models of the Nordic Glider or Wakefield Rubber types. The key to providing a combination of good stability and good performance lies in the design of the tail.

To prevent the airplane from becoming unstable at low angles of attack the lower surface of the tail must remain unstalled until after the lower surface of the wing has stalled. This can be accomplished by using an airfoil on the horizontal tail which has less camber than the airfoil on the wing (.. there then follow the calculations and graphs of the moments for a tailplane with a 6% Clark Y section - Wantzenriether).

(..) The tail lower surface stall occurs at an angle of attack of -9 degrees. The wing lower surface, however, stalls at an angle of attack of only -6 degrees, The result of this is that the tail is unstalled over the entire range of angle of attack for which the wing is not stalled and is thus able to provide the proper stabilizing changes in pitching moment with changes in angle of attack.

The important point here is that the airfoil chosen for the tail must be capable of generating a larger (more negative) negative lift coefficient than the airfoil chosen for the wing to prevent low angle of attack pitch instability ('an inversion in the moments' curve at low angles of attack' - Wantzenriether), if the airplane is expected to fly with the center of gravity much behind the wings' 25% chord point. This is particularly true if the wing airfoil has a lot of camber because highly cambered airfoils produce large negative (nose down) pitching moments which the tail must trim out at low angles of attack by producing a down force.

(* divergent: after a disturbance, the model increases its deviation, instead of correcting it - Wantzenriether.)

Barnaby WAINFAIN 1987

So for safety in our first attempts - a thin stab section, neither pointed nor blunt, more like a 2mm wire. With experience you will get on top of things, like our friend Herbert SCHMIDT, whose text you will enjoy reading.

As for Daniel GARSONNIN , he has participated in a recent American exchange of views on the subject. He, too, thinks that a stabilizer does not work mainly by means of its lift, but rather by a simple weathercock effect. The low aspect ratio, the permanent holding in check by the fuselage, the phenomena of vortices and downwash behind the wing, reduce considerably the effectiveness of greater or lesser camber. However, since experience proves that there is certainly something to choose... it is possible that different sections react a little differently in certain situations, for example when the speed of the model lessens in a nose-up.

Then some sections react quickly, others more slowly, and it is that that would make the small iifference between an all-purpose stab and an exactly adapted one. So everything can come into play: structure, nose entry, cambers, thickness etc...

As this viewpoint is a little pessimistic,

Références.

Arthur SCHÄFFLER, Die Entwicklung von A1-Hochleistungsmodellen, Mechanikus (~1959)

Dipl.ing. Jaroslaw LNENICKA, Auftrleb und Widerstand bel sehr niedrigen Reynoldszahlen, FMT-Kolleg n°9. Herbert SCHMIDT, F1A-Leitwerke, tragend oder nicht?,

Thermiksense 3/86. Barnaby WAINFAIN, Aerodynamics of airplanes with

cambered tail surfaces, Sympo NFFS 1987.

let's nevertheless remember the simple nose sandings carried out by Max HACKLINGER. And the incontrovertible importance of aspect ratio for the climb of rubber models: it takes no more than a single unit of aspect ratio to change visibly the model's attitude on the climb.

Rainer HOFSAB, Bewegung des Flugzeugs um die Querachse. Vol Libre 56.

Daniel GARSONNIN, Stabs, stalls and stability, Free Flight 4/1992.

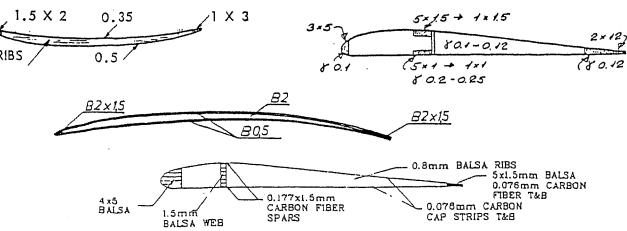
Fred PEARCE, Wing wake effetc on longitudinal stability. Sympo NFFS 1994.

Lifting or not ?

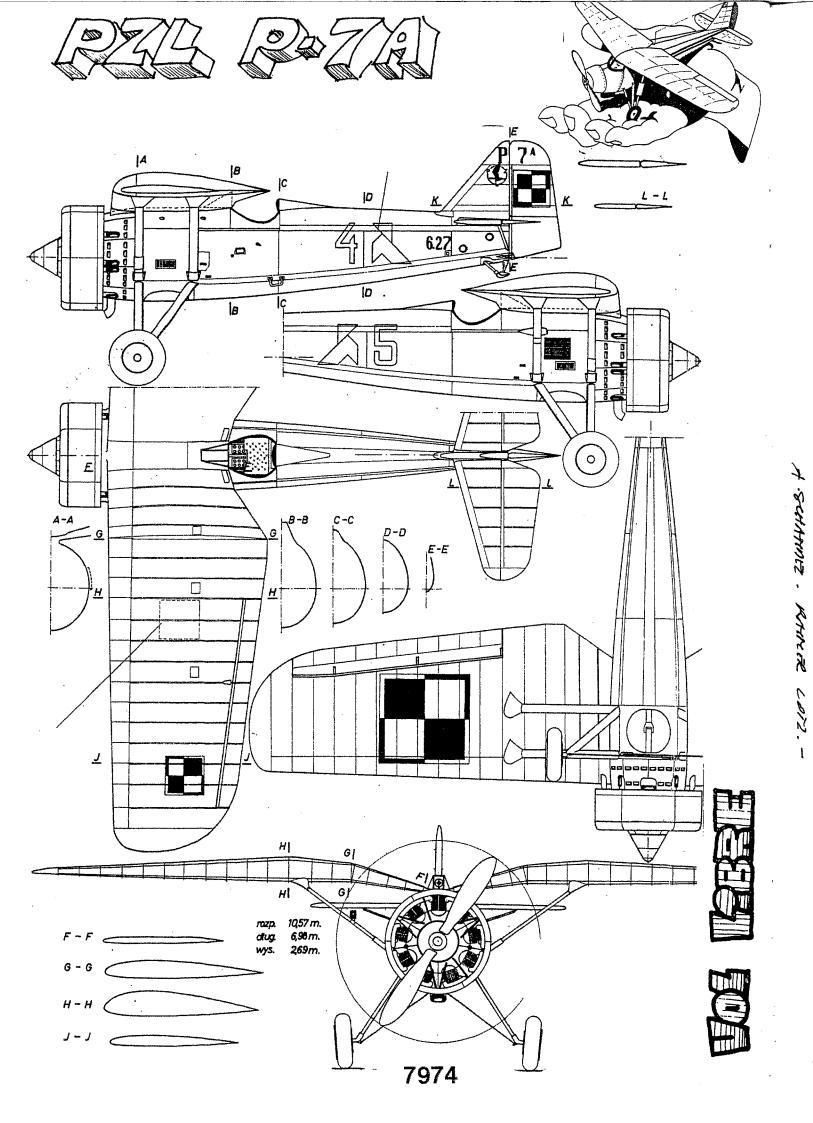
(..) Tailplane sections can be divided into symmetrical ones (NACA 006, flat plate), convex ones with a flat or slightly cambered undersurface (Clark Y 6 or 7%, Götting en 517) and thin aerofoils with a very undercambered lower surface (Göttingen 417a, S2).

(..) The tailplane's moment must be able to control the wing's moment.

Here symmetrical sections pose no problems at all. The gliders have a fairly short moment arm and a CG at 45% or less; they fly very well. The problem comes from the launch. When the tow accelerates, the glider goes faster and faster and one can't feel any tension on the line. At launch the model rears violently, then settles down fairly quickly. So a big gain in altitude is impossible. One solution is to make the tailplane incidence variable, to maintain the nose-up during the acceleration.


surface, are widely used. These sections can create problems for the transition to the glide, particularly if they have a relatively pointed nose entry. When the model is launched fast and too banked, it does not recover, or does so belatedly (..) In my opinion, the cause of this phenomenon is that the stab is operating on the glide in sub-critical fashion.* The result is a weak tail moment, which makes necessary quite a large tailplane, 4.3dm2 or more, and a long moment arm. At the launch the speed becomes great enough for the stab to go above the critical Re and as a result the tail moment

becomes greater than that of the wing. The result - a steady nose-dive. All this is well -known. Attempts have been made to remedy it by controlling the glider after its launch using a timer. (..) Or one can go for a fairly large nose entry radius, so that the stab stays throughout in a sub-critical condition. As G. Wöbbeking does with some success.


A similar result is achieved with sections that are always operating above the critical Re. Among these sections are the curved plate 417a and the S2 (Siebenmann). These sections create a powerful moment and the tailplane area can be kept very small (of the order of 2.5dm2). But it is impossible to stabilize the model

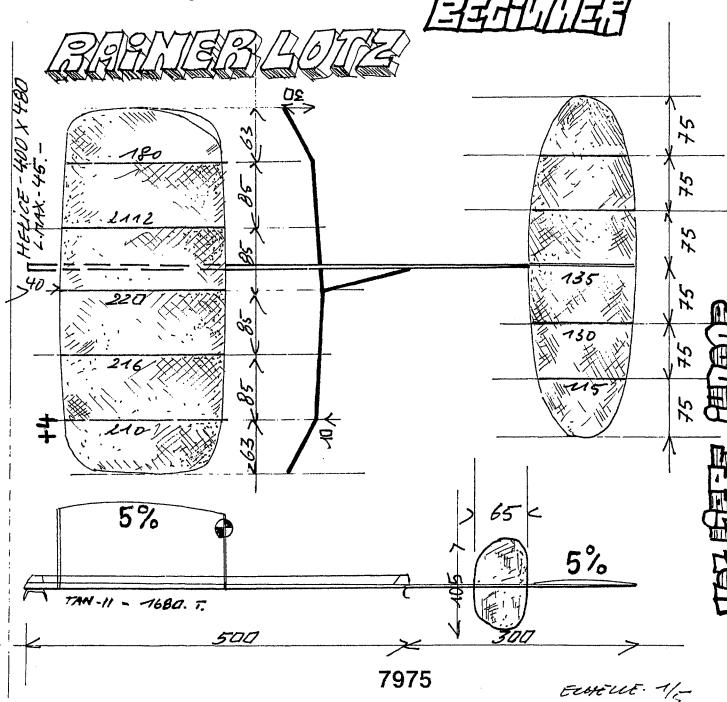
Herbert SCHMIDT, 1987

* The 'critical' Reynolds Number of a given section is that below which the section operates badly, giving weak lift and prohibitive drag. Lifting sections, especially with a flat under- In a sub-critical condition the upper surface airflow is wholly or partially separated, the lift slope spoiled (i.e. a big change in angle of attack results in only a small change of lift, with unpredictable jumps into the bargain). Above the critical Re the upper surface airflow remains attached, the drag is minimized, the lift slope is usable. A given section can also be modified. With a nose entry made more rounded, its critical Re goes up, as it does with greater depth and with more marked upper surface camber. Conversely, the 'plate' sections (2 - 4% thick) are always flying above the critical Re. - Wantzenriether

Tailplane sections: Butty. Wöbbeking's original and as built by P.Allnut. S2 by K.H.Haase.

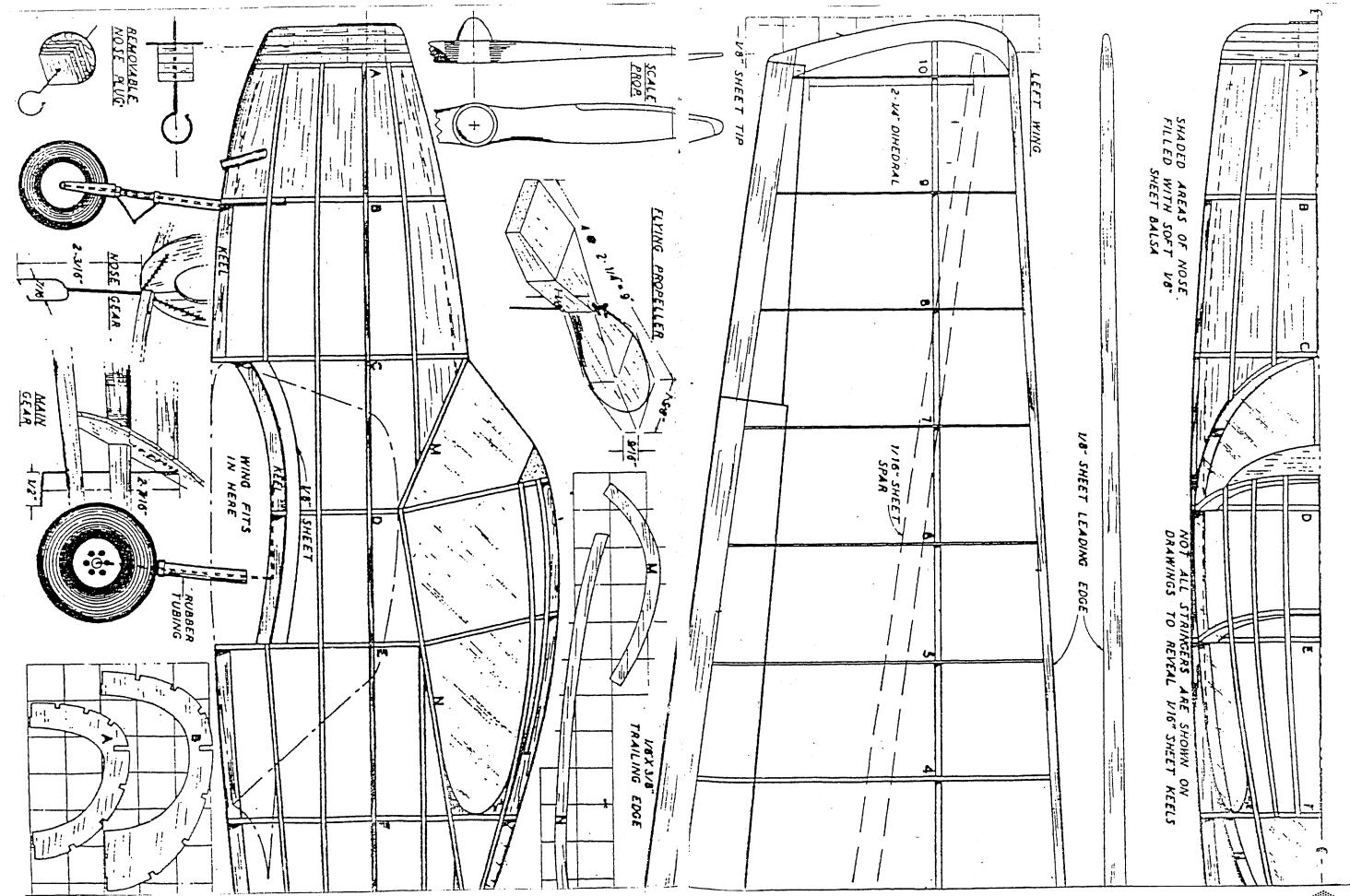
MENEGALDO FORTS. V. S. 7967. —

Jahrhunderts. Unter einem gewissem Unbehagen sah er in der der Nähe der Lampen, wie das Modell einige Sprünge veranstaltete, und aus der Bahn kam Bei der nächsten Schleife war es noch deutlicher, das Unbehagen auch ... Mit Spannung und genervt sah er, wie das Modell eine Zentimeter an der Beleuchtung vorbei ging ... Die schlechte Vorahnung bestätigte sich auf dramatischer Weise. Der Rumpf fiel in sich ein, die Flügel legten sich zusammen, und das ganze ging in Staub zur Erde!

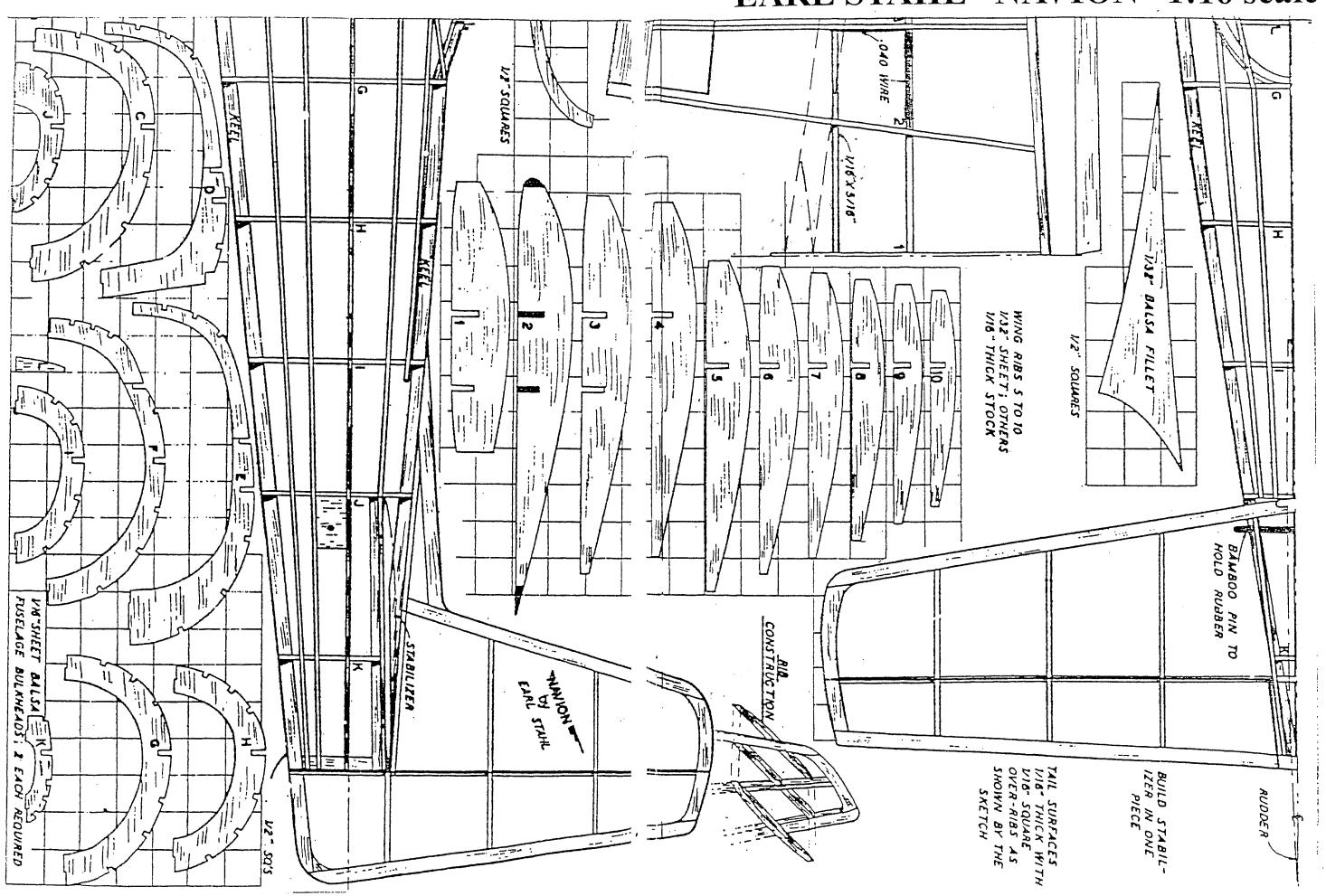

HERMEGILDO betäubt, näherte sich den Überresten, nur noch ein Häuflein von verbogenen Leisten und verbranntem Kondensatorpapier, mit den restlichen 2000 Gummidrehiungen...

Untröstlich sah er den Moment kommen wo er sich die Fragen stellen musste warum dies alles so verlief . Analysieren und Nachdenken nach dem Bau eines Modells!

Zu Hause angekommen nahm er den Katalog zur hand und las weiter ... über die Eigenschaften des Materials das er gekauft und benutzt hatte . Dies ist immer zu beachten .


Un da wurde er fündig im letzten Absatz : Schmelztemperatur : 35°

Ulises ALVAREZ.


EARL STAHL "NAVION" 1:16 scale

एक मिन्न

EARL STAHL "NAVION" 1:16 scale

MODIFICATIONS

Modifications apportées au règlement Maquette 66, pondu il y a vingt ans et qui auhiourd'hui ne semble plus entière satisfaction modélistes pratiquant la maquette à moteur en caoutchouc.

M66:

Voici ce que nous avons décidé entre pratiquants lors de la Coupe François d'Huc Dressler concernant cette catégorie d'aéromodèles .

- 1- Envergure libre, c'est à dire échelle au choix , donc possibilité d'utiliser tous les plans édités par nos revues aéromodélistes ce qui, à notre avis, devrait ouvrir la porte aux indécis, qui se trouvaient brimés par la limitation d'envergure.
- 2- Création d'une catégorie " aile basse " pour étendre le choix des modélistes et ne pas mettre concurrence des modèles tels le PIPER C4b et un P47 "Thunderbolr ".
- 3-Création des catégories CO 2 moteur thermique et moteur électrique . Ces modèles seront classés selon le mode de propulsion dont ils sont équipés
- 4- Priorité donnée aux temps de vol : c'est à dire 120 s maxi par tour de pour les appareils à moteur caoutchouc . les appareils à moteurs CO 2 etc seront également classés selon le temps de vol , toutefois les modalités applicables à ces appareils restent à définir lors de l'engagement des avions ainsi équipés.
- -5 Pas de jugement statique . Les concurrents devront seulement être en mesure de prouver l'existence des modèles présentés, par photos, plans ou triptyques issus de revues aéromodélistes aviation grandeur et tous livres concernant l'aviation .

PENSANT SATISFAIRE **DESIRS** DES MAQUETTISTES ACTUELS ET A VENIR, nous donnons rendez-vous pour la prochaine Coupe d'Huc Dressler qui aura lieu à VIABON LE 24 10 99.

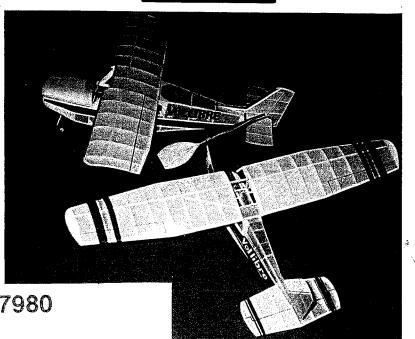
Ces dispositions sont également applicables pour les catégories sport et modèles anciens organisés par les 4 A lors des championnats de France.

C. MENGET

ONT PARTICIPE A CE NUMERO 129 VOL LIBRE

A. ANRIUKOV - F.F.NEWS - S WILLIS -E. FLYNN- P. LEPAGE - E. VACALEBRE -Ulises ALVAREZ - Vaclav PATEK - Joël BESNARD - J.P. TEMPLIER - Claude WEBER - René JOSSIEN - K. LEISSNER - -P.PETRUSEK - -INDOOR NEWS - Jean WANTZENRIETHER - H. ROTHERA -Rainer LOTZ - FLYING MODEL DESIGNER - Thierry LEFEBVRE - Pierre PAILHE - W. HACH - André SCHANDEL -

FIL DE TREUILLAGE jaune


30 F

r pıar	neur		
- 1	- fin	50m	
-2	- mi aroo	11	

35 F -3- gros 35 F

plus frais de port

A commander auprès de la rédaction .

RECUPERATION

Récupération des modèles munis de balises

En 144Mhz

La longueur de l'artenne doit être un multiple de 2.08métres, celle fournie avec le récepteur est une 1/20 onde.

Il en existe une dans le commerce qui est télescopique 1/10 onde pliée.

¾ onde dépliée

Elle est relativement pratique à utiliser et permet de multiplier par 2 la distance de réception totalement dépliée.

Malheureusement des ne sont pas efficaces pour chercher un modèle sans avoir d'axe précis, surtout à grande distance.

La seule solution raise au point par les radioamateurs qui s'exerce à la «chasse au renard est la fameuse H229 CV dont voici 2 plans de conception relativement imples.

L'avantage la fequence 144 est que notre corps fait écran à la réception de la balise, de qui permet en mettant le récepteur dans le dos, de faire 1 tour sur soit même. Lorsque la reception est interrompue cela vous donne l'axe à suivre pour trouver le mo èle.

Une astuce qui me vient d'Alain Delassus et que j'utilise assez souvent, est de mettre une CAP 1 10 de longueur 20 m/m à la place de l'antenne sur le récepteur ATTENTION SURTOUT NE PAS EMETTRE VOUS GRILLERIEZ LE TRANSITOR DE SORTIE DU RECEPTEUR.

Cela diminue considérablement la réception et vous donne une portée de 5 a 10 mètres tres appréciable pour la recherche d'un modèle dans un champ de maïs.

Voici un exemple que certainement pas mal d'entre nous ont vécu ou j'ai due utiliser plusieurs types d'antennes. Il y a environ 4 ans dans le Poitou sur un CH de Françe e fais un maximagistral, aucun planeur ne pouvais le louper, sauf une brique et encore. Bref le taxi se retrouve en 2 minutes dans les nuages et touche le su passé les 10 minutes de vol! Super j'ai l'axe à la boussole en plein milieu d'un champ de mais énorme. J'arrive dans le mais et là je me rend compte que je ne serai pas revenu à temps pour le vol suivant. Je suis donc evenu le soir avec l' HB 9 CV d'Alain Delassus qui me donne un axe presque du degré prés! Je rentre dans le maïs avec le récepteur allumé et l'antenne onde je fini par recevoir un signal, mais plus je m'approche cans un périmètre de 20 mètres environ le récepteur sature et il est très difficile de le trouver) c'est donc là où la CAP 10/10 fait son emploie et me permet de trouver le modèle en 2 secondes.

ANTENNES DE IOCALISATION

Par FC1LVT, Jean-Paul Yönnet

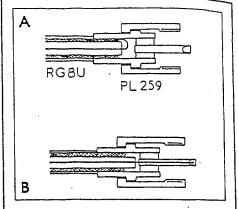
La question est souvent posée à la :ommission «Intruders »:comment ocaliser les pirates et les sources de perturbations? Les antennes utilijées pour le trafic sont généralenentmaladaptées, mais nous allons voir qu'il est facile de réaliser des antennes spécialisées pour la localisation, aussi bien pour les bandes décamétriques hautes qu'en

LES BANDES DÉCAMÉTRIQUES

Une antenne de type Yagi-Uda, montée sur un rotor permet de donner la direction du maximum de réception. Il est possible de localiser des signaux très faibles grâce au gain de l'antenne. Mais la mesure est peu précise, et l'antenne est difficilement transportable.

La radiogoniométrie sportive se pratique sur les bandes décamétriques en 3,5 MHz. Les récepteurs utilisent un bobinage sur un barreau de ferrite, permettant de déterminer l'axe sur lequel se situe l'émetteur. En ajoutant le signal d'une petite antenne fouet, on peut lever le doute et obtenir la direction

Pour les bandes décamétriques hautes, l'« antenne en boucle coupée » fournit des relevés extrêmement précis. Contrairement à une antenne Yagi-Uda, qui donne la direction en mesurant un maximum, cette antenne fonctionne par repérage des zéros. On peut mesurer une direction avec une précision de quelques degrés.


L'« ANTENNE EN BOUCLE COUPÉE »

Cette antenne a déjà été décrite par plusieurs auteurs (1,2). Elle est aussi connue sous le nom de « loop magnétique ». Il existe plusieurs versions, qui utilisent souvent des condensateurs d'accord à la base de l'antenne. Pour la localisation, la version la plus élémentaire suffit largement et fonctionne

Cette antenne est présentée sur la figure 1. C'est une boucle en câble coaxial, dont le blindage est coupé au milieu de la circonférence. Sa réalisation est très simple. Il faut très peu de matériel :

- 1 mètre de câble coaxial type RG8U (ou équivalent),
- 2 prises UHF (PL 259).
- 1 té UHF (UG 258).

A l'une des extrémités du câble coaxial, la prise UHF est montée de manière tout à fait classique (voir figure 2b). A l'autre extrémité, l'âme du câble coaxial est reliée au blindage, et isolée de la partie centrale de la PL (voir figure 2a). Quand les deux prises UHF sont assemblées, il faut couper le blin-

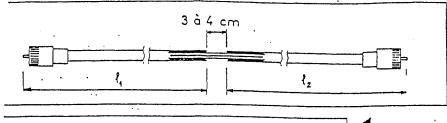
FIGURE 2

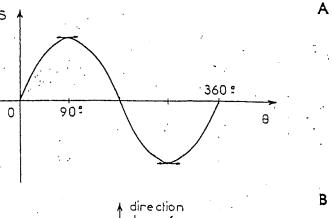
CONNEXION DES PRISES A - PARTIE CENTRALE ISOLÉE ET ÂME RELIÉE À LA MASSE - MONTAGE CONVENTIONNEL

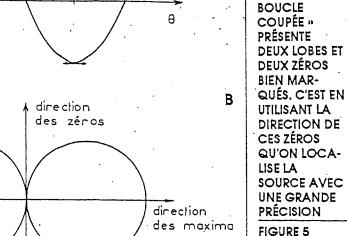
dage du câble sur quelques centimètres (3 à 4 centimètres, ce n'est pas critique) mais en respectant exactement l'identité des longueurs 11 et 12 (figure 3). L'antenne est assemblée en refermant les PL sur le té. La rigidité du câble est suffisante pour assurer la tenue mécanique.

Avec un périmètre de 1 m, cette antenne est très bien adaptée pour les bandes de 20 à 30 MHz. Cepérimètre doit être de l'ordre du dizième de la longueur d'onde. Elle fonctionne très bien pour la chasse au renard en 27 MHz. Pour les bandes plus basses, il faut agrandir la spire, et prévoir un renfort pour la tenue mécanique de l'antenne.

COMMENT UTILISER CETTE ANTENNE?

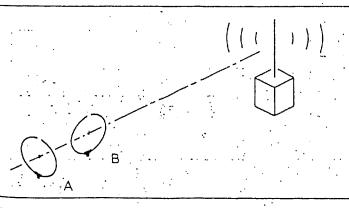

C'est très simple. Quand vous faites pivoter l'antenne d'un tour, vous relevez deux maximums quand l'émetteur est dans le plan de l'antenne, et deux zéros quand le plan de l'antenne en perpendiculaire à la direction de l'émetteur (figure 4). La direction de ces zéros est très précise, beaucoup plus précise que celle des maximums. C'est ce zéro qui est utilisé pour trouver la direction recherchée (figure 5, position A).


Attention, l'antenne est bidirectionnelle ; vous obtenez une direction, mais l'émetteur peut-être devant ou derrière vous. Il faut faire une autre mesure qui coupe la première pour lever le doute.


En pratique, avec un atténuateur entre l'antenne et le récepteur, vous pourrez ajuster le niveau reçu pour faire la mesure dans les conditions les meilleures. Un atténuateur à cellules en T (figure 6) convient très bien.

En VHF, certaines antennes directives peuventêtre utilisées en portable. La radiogoniométrie sportive se pratique avec des antennes de type HB9CV, ou Yagi-Uda 3 éléments. Ces antennes à gain permettent de localiser les signaux faibles. Quand les signaux sont

BLINDAGE DU CÂBLE EST SUPPRIMÉ SUR 3 À 4 CM EN HF ET 5 À 10 MM EN VHF. IL FAUT SURTOUT BIEN RESPECTER L'ÉGALITÉ !. = I.



(c)

20 dB

ATTÉNUATEUR À CELLULES EN T

||68

(b):

104B

1100

(a)

5dB

BOUCLE - POSITION A (ÉMETTEUR DANS LE PLAN PERPENDICU-LAIRE AU PLAN DE LA BOU-CLE): AXE DES ZÉROS -- POSITION B (ÉMETTEUR SITUÉ DANS LE PLAN DE LA BOUCLE): AXE DES MAXIMA

UTILISATION

DE L'ANTENNE

FIGURE 4

LE DIA-

GRAMME DE

L'« ANTENNE

RAYONNE-

MENT DE

(d) 20dB 270 ၂၉ Des suffisamment forts, l'« antenne en boucle coupée » permet de faire des relevés avec une grande précision, de l'ordre de quelques degrés.

En VHF, la réalisation de cette antenne boucle reste très simple:

- 35 cm de câble coaxial type RG58 (diamètre 5 mm),
- 2 prises BNC (UG 88).
- 1 Té BNC (UG 274).

Comme pour l'antenne HF, il faut faire attention au branchement des deux prises BNC : l'une est connectée normalement et l'autre est tout à la masse, en enlevant le connecteur central de la prise. La suppression du blindage doit être réalisée sur quelques millimètres (5 à 10 mm) exactement au milieu du câble.

Associée à un atténuateur, cette antenne permet de faire des relevés extrêmement précis. Mais comme la propagation des ondes VHF est plus complexe que celle des bandes décamétriques, il faut beaucoup plus d'expérience pour pouvoir l'utiliser correctement. Avec un peu d'habitude, on peut même arriver à séparer les réflexions de la réception directe.

Cette même antenne peut aussi être utilisée pour la recherche des balises en 121,5 MHz dans le cadre des opérations ADRASEC. En pratique, il est souhaitable d'être équipé des deux types d'antennes :

- Une antenne type HB9CV ou Yagi-Uda qui, grâce à son gain, permet d'entendre des signaux faibles et de localiser approximativement la source.
- Une antenne en boucle coupée, moins sensible mais beaucoup plus précise, qui permet d'aller beaucoup plus vite dans la phase finale de localisation.

CONCLUSION

Malgré sa faible sensibilité, l'« antenne en boucle coupée » permet de réaliser des relevés de radiogoniométrie extrêmement précis. Cet article présente deux versions de cette antenne: l'une pour les bandes décamétriques hautes, et l'autre pour les bandes VHF. Elles sont très simples à réaliser, et bien adaptées à la localisation rapprochée. Ces antennes peuvent rendre de très grands services pour la recherche des sources de perturbations sur les bandes radioamateurs, pour la localisation des balises d'avion et pour toute activité de radiogoniométrie en général.

RÉFÉRENCES

(1) ARRL Handbook, chapitre « Monitoring and Direction Finding »

(2) Jean-Pierre Guicheney « Construisez et réali-

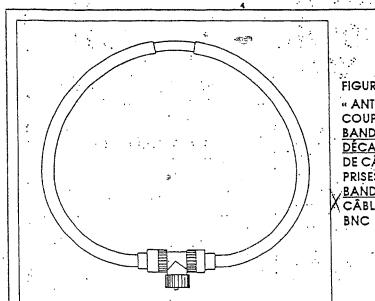



FIGURE 1 " ANTENNE EN BOUCLE COUPÉE » BANDES DÉCAMÉTRIQUES : 1 M DE CÂBLE RG8U ET PRISES UHF BANDE VHE: 35 CM DE CÂBLE RG58U ET PRISES

RADIOGONIOMÉTRIE EN VHF

sez vos antennes », éditions 105

Il y a des jours où notre âme est en peine, où le douleur au coeur est ineffable!

La région du sud -ouest a été particulièrement touchée ces derniers mois, par les départs définitifs d'Aribaud de Berthe et tout récemment de Jacques Valéry .

Nous sommes toujours desemparés face au destin, l'embarras est grand lui aussi, car dans ces circonstances nous ne savons jamais si nous disons trop ou pas assez :

Néanmoins le monde de l'aéromodélisme en général et celui du Vol Libre plus particulièrement sont en deuil.

Jacques Valéry avait consacré, en dehors de sa famille toute sa vie au monde aéronautique . Pilote ravitailleur en vol , instructeur à l'Aérospatiale, aéromodéliste en vol circulaire, en vol libre (extérieur et intérieur) il brillait de l'infiniment grand à l'infiniment petit. Il pouvait mesurer et comparer la complexité d'un tableau de bord de Jumbojet, à celle du remontage délicat d'un moteur caoutchouc pour F1D à plusieurs milliers de tours.

Mais ce que nous nous retiendrons surtout de Jacques, c'est la grande classe de sa personnalité, son dévouement à notre cause . Il savait mener dans la discretion et l'efficaci té à la fois des tâches matérielles administratives, et les hommes.

Membre du Comité Directeur de la FFAM Rapporteur du CTVL, Chef d'Equipe de France (Argentine et autres) concurrent loyal , il était unanimement apprécié et écouté. La photo et les notes de musique arrondissaient l'eclectisme de sa personne et rajoutaient à son charisme .

Il avait aussi dons et motivations de pouvoir aborder avec savoir faire, plusieurs catégories en vol circulaire comme en vol libre. Il savait aussi

innover dans la théorie et dans la pratique des modèles, construction et vol, tout en conservant une marque personnelle caractéristique. Un wake de Jacques ne ressemblait à aucun autre, il était identifiable. même en vol et à distance .

Sans aucun doute le décès de Jacques laissera un vide immense, et définitif dans notre petit monde de l'aéromodélisme

. Des pins des Landes bercés par les vents de l'océan sous lesquels tu avais établi ta demeure e t ta famille, jusqu'ici en Alsace où tu avais aussi quelques racines, des coeurs te pleurent .

Salut Jacques .

André SCHANDE

Pierre PAILHE

Helia 550×700 16 bring 6,35 x1

Jacques VALERY a débuté dans l'aéromodélisme à la fin des années 40, il n'avait pas 10 ans, d'abord par de petits engins en carton découpé qu'on trouvait dans les bazars. Puis ce furent ce qu'il appelait « des petites conneries », c'est à dire de petits engins à voler, planeurs tout balsa, canards à moteur caoutchouc, ailes volantes... qui paraissaient assez couramment dans les revues modélistes de l'époque. Ces « petites conneries ». il convenait que, malgré leur aspect dérisoire en regard des modèles « normaux » actuels, elles avaient contribué à assurer bien des vocations de modéliste...

Le début plus sérieux fut un « Hors-d'œuvre » plan de René Jossien (1953), qui permit de vrais vols. Puis ce fut un « Gunic », et diverses autres machines, des premiers Wakefields aussi, Jossien, Morisset, qui lancèrent Jacques dans le modélisme. A cette époque, il habitait Montauban et cotoyait au lycée quelques personnes qui deviendront plus ou moins célèbres, Philippe Labro, Jacques Amalric... et... André Laffite...

Après le bac, Jacques est étudiant à Toulouse ou il côtoie les modélistes du coin, chez qui il apprend beaucoup: Bourthoumieux, Puech, et Muller surtout. Il aborde alors sérieusement le Wakefield et commence à jouer ce rôle d'animateur et de dynamiseur de vocations qui restera le sien, en formant des copains qui, parfois, auront des résultats plus brillants que lui : Terazzoni, Pouytès, Arrabeyre ... Cependant, lui même apparaît au premier plan en 1960 en étant 2^{ème} au championnat Wakefield. Complètement inconnu en dehors des cercles languedociens, il s'impose avec un appareil extrêmement original, l'Affolé, pour lequel il a dessiné une ligne à laquelle il sera fidèle pendant 40 ans.

Ouittant Toulouse pour Strasbourg, il forme d'autres modélistes, Germain, Fernandez ou Koppitz rencontre aussi Lore, sa femme. Peu de temps après, c'est l'armée. Naturellement, il est dans l'Armée de l'Air. Officier de réserve, on lui propose de « rempiler » et de faire une carrière de pilote. Après une nuit de réflexion qui lui parut aussi pénible que celle de Pascal, il accepta. Ce fut le début d'une carrière qui le conduisit dans diverses bases, et divers cieux, compris en Afrique, au manche d'un certain nombre de grosses machines dont les ravitailleurs en vol. C'est en pilotant ces engins qu'il vint à Mont de Marsan et décida de s'y fixer définitivement dès avant la fin de son contrat. En plus, il y avait là un club actif de vol libre...

Pendant ces années il avait conservé la pratique du vol libre et même conquis en 1965, sa sélection dans l'équipe de France Wakefield. Il y fit honneur avec une machine magnifique, trop peut-être, qui lui joua les tours qui font que de telles participations au plus haut niveau laissent parfois un goût amer. Vers 1980, il aborda également l'indoor, catégorie dans laquelle il devint très vite un très bon spécialiste, collectionnant une impressionnante série de titres en catégorie « Beginner ».

Entre temps, son sens des autres et des responsabilités l'avait conduit dans les années 80, à s'occuper du Comité Technique Vol Libre, dont il assura le secrétariat, mettant en place une série de principes de fonctionnement qui régissent encore la discipline. Parallèlement, il devint membre du conseil de la F.F.A.M. et de l'U.R.A.M. n°8. De même il assura à plusieurs reprises la tâche de chef d'équipe, en Argentine, aux Etats Unis, en Yougoslavie... 7985

CONTE

HERME (commme l'appelaient ses amis) était un passionné des maquettes à l'échelle dans la modalité des peanuts (Cacahuètes).

Il construisait un modèle à la suite de l'autre avec une impétuosité , laissant de côté toutes les normes élémentaires , comme celle de n'utiliser que le matériel strictement nécéssaire !

Par conséquent ses modèles atteignaient des masses totalement obsolètes ... du genre 25 grammes .

Pour cette raison , ses performances n'avaient jamais dépassées les 1 s et les vitesses de vol de ses modèles ressemblaient plus à celle d'un EXOCET qu'à celle d'un avion réel . Sa totale ignorance de ce qu'était " l'énergie cinétique d'un mobile déterminait que les impacts contre les murs étaient définitivement fatals . Tout ceci poussa quelque collègue peu considéré à lui adjuger le sobriquet de HERMENEGILDOO le poids lourd " . _ Son expérience se poursuivant HERMENEGILOO avait commencé à se demander si la cause de ses echecs répétitifs en ce qui concerne les vols , n'était pas en relation directe avec la masse ecxessive de ses modèles ; et c'était déjà un grand pas en avant .

Il est vrai qu'il lisait le dernier catalogue de "AERO HOBBY CENTER " quand une annonce suscita son attention . : F.K. 20 " MATERIEL SYNTHETIQUE , MASSE SPECIFIQUE 20 Grammes le Dm 3 - AUSSI RESISTANT QUE LE BALSA de 100 Grammes le Dm 3 "!!

HEME ne lit plus. Il prit le nom et l'adresse du fabricant, et grâce à cette magique efficacité du courrier moderne en 15 jours , il avait en sa possession et pouvoir un stock considérable de matériaux , tels des longerons de 1 X 1 , planchettes 0, 5 mm ainsi que des blocs de diverses dimensions .

Il lui restait seulement à choisir un modèle attrayant et ce fut le SES a Britannique de la Première Guerre mondiale duquel il possèdait un excellent plan avec les moindres détails . - Pour la première fois , HERMENEGILDO obtint une balance de précision avec laquelle pour la première fois fois aussi il pesa élément par élément son modèle . Les pesées furent réellement surprenantes

Ailes au total 0,40 g; fuselage : 0,35 g; empennages : 0,10 g train d'atterrissage : défiant le gravitation enfin, masse totale 2,5 g. A cela il ajouta un écheveau moteur de 1 g de 1 X 1, avec une capacité totale de 3500 tours, avec une bonne marge de sécurité.

HERMENE GILDO était euphorique il sentait qu'il avait en main une arme stratègique pour la prochaine compétition . Le 55 ème Championnnat National de Vol d'Intérieur , tout proche .

Ce jour là il se présenta , dans la salle où se déroulaient les championnats avec son " arme secrète " soigneusement présentée dans une boîte en carton d'où elle ne sortirait qu'au moment voulu .

Durant les heures qui précédèrent ce moment il vécut en avance l'émotion et l'étonnement que provoquerait, parmi le public et ses adversaires de vol, son immaculé biplan!

Et le moment attendu arriva enfin . les hauts parleurs annoncèrent son nom avec une parcimonie exagérée il se plaça au centre de la piste avec beaucoup de délicatesse. Il s'accroupit et mit à terre son précieux modèle , un trésor . Après l'avoir chargé avec 3500 tours et suite à un bref décollage , le modèle commença un vol à l'incroyable vitesse de 1 m/s , s'enroulant dans une impeccable spirale ascendante de quelques dix mètres de diamètre . A chaque tour HERMENEGILDO sentait croître en lui un diabolique sentiment de vengeance (né d'un terrible sentiment d'infériorité accumulé) vers ceux qui l'avaient tellement mortifié avec leurs lourdes blagues .

Le moment était venu de laisser ces imbéciles regardant le plafond, bouche bée, pendant au moins trois minutes de vol

Enfin les révolutions du cerveau de HERMENEGILDO touramient à la même vitesse que l'hélice de son biplan Au troisième tour , lorsque son modèle approchait de la minute trente de vol, une puissante batterie de spots l'illuminait . Il profita de l'occasion pour prendre la photo du siècle, son modèle illuminé . Sous l'étonnement de HERMENEGILDO, la proximité des spots provoqua un cabré qui fit dériver la trajectoirs du modèle. Au tour suivant la perturbation fut encore plus forte et détermina un vol en festons ... La perspective et la tension des nerfs grandissante pour le prochain tourvirent le modèle passer à quelques centimètres seulement des spots Le mauvais présage se confirma au passage suivant, d'une manière réellement dramatique! Le fuselage de son biplan " implosa ", les ailes se replièrent et le modèle rejoignit le sol en poussière.

HERMENGILDO etourdit, s'approcha des restes, un véritable tas de longerons tordus et de papier condensateur qui enveloppait un peloton de gomme, avec une réserve de 2000 tours accumulée ...

Inconsolable HERMENEGILDO ne voyait pas le moment de rentrer chez lui pour raisonner et analyser les faits , penser et repenser à ce qui avait suivi cette attitude fortement positive pour un éaéromodéliste , avant , durant et après la

SUITE P. 7990

Le VOL : RÉGLAGES

当門団	103 103 103 106 106 106 107 107 107 108 108 108 108	Schaeffler Ursicino Frugoli Hatshek MRoo7 MRoo7 Sotich Hall McCombs	Rocke l'aile Piloter le stab sans IV Bewegungslose Winkelste DIV P30 Window 12 dm2 Fini le plantage spiral F1B Plastic 2 F1B Standard'93 Scarlette nouveau conce Réglage planeurs F1A Trimmung F1A-Segler F1B #27 Maquettes et dynamique CH Le Vénérable CH Protozoair Scarlette continue CH CO2 Miss America Quel virage plané? DIV 1/2A Rieti 20 DIV P30 Oki-lébo en M DIV P30 Goblin 1992 Réglage CH 2 faces CdH. in vertical climb Réglage MAQ. Réglage MAQ. Réglage MAQ. Réglage des Cac.	111 112 112 112 112 113 113 114 115 115 116 116 117 117 118 118 118 118	VL Salzer Mueller Ahl	Réglage MAQ. Les 20 derniers mètres The last 20 meters F1B .A1 Hip-Hop Techniques inter 93-95 F1B Welles CO2 Embarquez! #1 CO2 Ennuis? High tech at the WC Scarlette 1995 CO2 Embarquez! #2 Réglages F1A Mise au point des MR Virer dans le souffle Précisions sur réglages CO2 Longue vie au moteu Toujours à droite CO2 Réglages Moteur Grimpée à droite Suit More info on trimming Au travail le stabilo! CO2 Une montée efficace Régler un biplan Zéro pour le souffle Propwash & Co Misère de souffle!	119 119 119 119 120 120 121 121 121 122 122 123 123 123 124 125 125 126	Segrave Segrave Glue Guru MR007 Bognolo Segrave MR007 Segrave	Réglage des biplans Mit Pfiff Mig?Non Scarlette revisited Prop wash spin More on right h. clime DIV F1E U-Go 2 Mig?Non Les sans-queue Scarlette revisitée CO2 Puissance et Froid Autostabilité etc Notes on Tailless Construire & régler HL La façon de charger Règler un vol en spira CO2 Chargeur et moteur Les catapultés Ballast changing motor CO2 Cellule et réglage Tailless Autostability DIV A8 SQ Easy-T CO2 Modifs et Canicule F1A Andy Tête et bras HLG
-----	---	---	--	--	--------------------------------	---	--	---	---

Le VOL : COMPÉTITION PERFORMANCE

100 101 101 101 101	MRoo7 Grégoire Hacklinger VL MRoo7 MRoo7 Verran	CH Coupes in GB CO2 7 moteurs CO2 Aérodynamique du MP.11 Symposium F1B Oregon Déthermalo Grande surfa H.Gremmer und CH-Bremse CH La Grande Surface	104 104 105 105	Grégoire Aupetit Alvarez Grégoire Hach Hach	CO2 Conseils CO2 La mesure du vent Impact : Analyse Remplissage réservoir C CO2 Le moteur WS-79 CO2 Déthermalos spéciau CO2 Sicher zu Boden	119 119 122 123	Rocca Sloane Barker Matherat Orel Hach
	Jossien	Der richtige Schwerpunk		Grégoire	CO2 Moteur Modela 'S'	127	насп

Marginaux évolués
Anatomy of a storm
Remontez exact!
Down wind tracking
Sélection..Berne..
Catalogue minuteries OK
CO2 Neuer Motor GMW-73

RETRO plans et articles

99		La 3ème d'Ellila	111	Enevold	Nordic winner 1946	120	Poo1	A8 SQ 1962 N.F. V
100	Hacklinger	A2 MP.11	111	Jossien	Moto-Slow 1948		Jossien	CH SQ 1964 Ail-Cup-Div
102		Planeur pente R-40	111	Jossien	Construire modèles anci	120	Burt	SQ 1962 Plonk V
103	Rennesson	Quiproquo moto 200 g/cm	112	VL	M. America moto1935	120	Schaeffler	A1 A1/1 1961
	Montagne	Planeur 3 mètres	112	Jossien	CH Jenisso 1951		Sabel	A8 SQ 1958 Mainmove III
	Sangiorgi	Hélico caout Ascender	113	Cheurlot	WAK Kurdan 1958		Tlach	noto 1957 Kl. I
	Méritte	CH Machaon	114	Jossien	Planeur Nez-Court 1948	123	Goldmann	A1 1957 DMM Sieger
	Dague	WAK 1937 classé 10ème	114	Gastaldo	WAK 1951	125	Ciesielski	A2 de 1956
109	Howse	WAK 1937	116	Jossien	Caout.1952 Croquignol		Wyett	A8 SQ Manxie III
110	Bullock	WAK 1937	117	Coulon	Caout. Bifuselage 1939		Schubert	A8 SQ Klasse N2
110	Jossien	CH Basplum 1954	117	Beck	Al Spatz 1954	·		A wrappa Hp

OUTILS / DÉTAILS intéressants

100	MRoo7	Nervures en géodésique	106	MRoo7	Coffrage aile CH léger	119	Segrave	Box clever with a D
103	Moreau	F1A	114	Gaggl	CO2 Very small motors	125	Weber	Extracteur d'écheveaux
104	Jedelsky	Origine aile Jedelsky	119	MR007	Soudure à l'étain	127	MR007	Vieilles astuces
105	Schandel	Nomenclature p.débutant	119	Ruyter	Thermal detector			

PROFILS dessin / coordonnées

100-150 : dessins/drawing/Zeichnung de 100 à 150 mm

98	Tsuda	F1C Cosmo Sky-Scraper	112	?	Night Train 155	124	Ruyter	F1B Mk 10
98	Vosejpka	Pr.aile 150	113	Hage1	Pr. moto Darned 155	124	B 8353-b/2	Profil aile 160-200
99	Hancock	Pr.aile 100 à 165	114	B 7406-f	80 - 160	124	B 7404-b	Profil aile 130-180
101	Braun	A1	114	Got.57	Profil 155	125	B 6556-c	Profil aile 100-170
101	White	Pr.aile 150	115	Grey	F1B W.795	125	B 6405-b	Profil aile 100-170
103	Göt 795	Pr.aile	115	CJ-2	Autostable 140 mm	125	В 6356-Ъ	Profil aile 180
105	Koster	Pr.aile Koster 66	115	CJ-4	Autostable 140 mm	125	SI 64009	Profil aile 140
106	Benedek	24 Pr.aile 160 mm	115	CJ-5	Autostable 140 mm	126	В 6455-Ъ	Profil stab 80-140
108	SI Thomann.	.22 Pr.divers 160	116	Got.134	Profil plat 9.5% 158 mm	126	B 6453-b	Profil stab 80-140
108	Benedek	7457d2/6356 156	116	White	Profil F1B 80-160	126	USA 5	Profil aile 90-140
109	Gard 8910	Pr.aile 160	117	Allnutt	F1A PA.57	127	B 6306-b	Profil aile 120-180
110	Göt 417	Pr.aile 160	117	Beales	F1B N*8	127	В 8306-в	Profil aile 130-180
111	Ruyter	F1B Mk.10	118	Ritz 6407	Profil planeur 160			
111	Simplex	6 profils F1D	124	Motsch	F1A HAM 96			

REGLEMENTS - FORMATION - V.L

	97	Rocca	Propositions F1C	103	FAI	Immatriculation inter	114	Schlosberg	19 et 179 secondes
	97	Rocca	For a Change of F1C	103	CTVL	Règlement A1 et Maxis	114	Schlosberg	The 19 & 179 s. issue
	97	Rocca	Vorschlag für F1C	104	Millet	CH Challenge Europe	114	Zaic	Model building publicat
	97	Cheurlot	Médaille d'honneur FFAM	104	Allegret	Aéro-philatélie	114	Schlosberg	Frage der 19 und 179 s.
	97	Trachez	Règlements et applicati	104	CTVL	Toutes les catégories V	114	CTVL	Réunion du 20.4.96
	97	Schmelter	Arroganz Freiflieger	104	Galichet	Avoir des idées ?	115	Koutny	Openscale 1996
	98	Korsgaard	Some comments	105	Pailhe	Why ? Pourquoi ?	115	Breeman	Contest idea
	98	Horejsi	Spirit of FF revisited	105	Schande1	Hommes et Structures	115	Segrave	Heard on flying field
	98	Schmelter	Arrogance chez le VL	105	Hacken	Coupe du Monde	116	Schandel	VL a 20 ans
	98	Dupriez	Acheteurs de victoire	105	Millet	CH Rules Challenge Euro	116	Schande1	Flyoff et chronos
	98	Horejsi	Esprit du VL à revoir	106	FAI	Règlement Coupe du Mond	116	Segrave	3 hommes dans la rue
	99	Ducklauss	Plus silencieux les F1C	106	Rothera	Réponse à Pourquoi	116	Segrave	3 men out walking
	99	Ducklauss	Make them quieter	106	Delcroix	1000 jeunes de plus	117	VL_	Nervure or E.Riberolle
	99	Schande1	Vol Libre International	107	Delcroix	Nervure d'Or 94	117	Dupriez	Propositions flyoff
	99	Sauter	Le V.L. plus attrayant	107	Schandel .	People and Organisation	117	Segrave	Une année d'un champion
	99		Sport de haut niveau ?	107	Trachez	Chasse aux idées	117	Hach	CO2 Regelvorschläge
	99	Millet	CH Challenge Europe F1G	107	Schlossberg	Modèles à louer	117	Segrave	A year in the life
	99	Reitterer	Wirkliche Sportklasse	107	Jossien	Plume d'or 94	117	Segrave	What's wrong with FF?
	100	Rey	100ème numéro	108	Augustus	Non-technical FAI	117	CTVL	Sélections 1996
	100	Piller	Vol Libre 100	109	Schouwstra	Faits Jeunes Hollande	118	Schandel	Mort lente ?
	100	Cheurlot	Vol Libre 100	110	Rushing	'Wak.Intern.Cup 1911-95	118	Millet	Fréquences
	100	Jossien	Le 100 à la Une	111	Osseux	Quoi les jeunes?	119	Alvarez	Flyoff le spectre
l	100	Dilly	Builder of the model ru	111	De Visser	Fly-off et restrictions	119	VL	Mini-Wak silhouette USA
	100	?	Zu Rocca's Vorschlag	111	Lepage	Eviter le mur	119	Cheurlot	Hubert Ferté
,	100	Cerny	Dernière Génération	111	VL	Frais pour sélection 95	119	Cheurlot ·	Pierre Bluhm
	100	VL	Sommaire V.L. 78 à 96	111	Schande1	VL "international"	120	Schirmer	Ballade championnat
ł	101	Wantzenrietl	hNervure d'Or 93	111	Schandel	Chance hasard	120	٧L	CO2 La guerre du CO2 ?
	101	Gerini	A propos FAI-Klassen	111	VL	G.Aringer Nervure d'Or	121	CIAM	CO2 Règlement FiK
	101	Melchisedecl	hPaar Worte zur B.O.M.	112	Segrave	Un avenir pour le V.L.?	121	AMA	98 LRS postal rules
l	101	Cheurlot	70 ans et alors ?	112	VL	DIV M. America moto1935	122	VL -	Nervure d'or 97 Stamov
,	101	Korsgaard	On the status of FF	112	Segrave	Zukunft ?	123	TS	Proposition et Demande.
	102	Thedo	The New generation	112	Varnau	Verein gründen	123	CIAM	WC rules
r	102	Thedo	La nouvelle génération	113	Piller	St-Yan	123	Woebbeking	CO2 Neue Klasse F1K
	102	Millet	CH Challenge Europe	113	Woodhouse	Changement d'approche	124	Schande1	VL parution etc
r		CTVL	Aménagement des catégor	113		gNouvelles règles CIAM	124	Hoepfler	Nach dem Zorn
1	102	Grégoire	CO2 CO2 en France	113	Riberolle	Le VL pour moi	124	Callet	Cocorico
	102	Gallet	Allezvol libre!	113	Schandel	Agrandir un plan	125	Schirmer	Penso emti
	102	Thevenon		113	Cerny	Memento du juge MAQ		Simon	Pour un musée aéro
	102	White J	B.O.M. and Others	113	Varnau	Lancer un club	126	Mueller	Über Artikel 1998 Sympo
	103	Schlossberg	Non-technical FAI	113	VL	FF Forum 1995	126	Groessl	Fliegen oder Schiessen
	103	Schlossberg	Des FAI non-techniques	113	Woodhouse	A change in approach	127	Groessl	Voler ou Tirer

Some medite

REPORTAGES - CLASSEMENTS

	97	Weber etc	La CH M-Bayet 93 St.And	109	Carles	Ch.de F. 95	119	Grégoire
	98	Marilier	Cambrai 1993	109	Cerny	MAQ Horice + Brno 1995	119	Delcroix
	98	Delcroix	Salon Ind. P.de Versail	109		Classement C.du M.1995	120	Schande
	98	Zeri	1ère Stonehenge Cup		Boutillier		120	
_	98	Schandel	Pampa Cup 93		Schandel	Domsod Champ. du M. 95	120	Cerny
" [98	Schandel	National SAM-CLAP 93		Piller	Aux armesCh du M 95	120	Pailhé
7	98	Delcroix	Orléans 93	110	VL	Classement Ch du M 95	121	
_	99	Schandel	Lost Hills Ch.du monde	110	Schandel	Karlsruhe 1995	121	
	99	Schandel	Poitou 93		Delcroix	Orléans 95 Internat.	121	
<u>-</u>	99	Schandel	Caen 1993 Ch.de France	111		Champ. de F. Niort 95		Picard
7	99	FAI	Ch.d'Europe 93		Carles	Les F1B à Niort 1995	121	
1	100		tFlémalle 93	111	VL	Serge Tedeschi	121	•
_	100	FAI	Coupe du monde 93		VL	Bern 95	121	Frugoli
	101	Jossien	Portrait A.Galichet	111		Coupe du monde 95	121	1146011
		Piller	Tribulations aux USA		Delcroix	Orléans 95	121	Segrave
V		Morrel	93 World FF Championshi		Meritte	CH Le Coupe in England	121	VL
-)	101	Delcroix	Orléans 93	112		Le Luc 95	122	VL
\neg	102	Méritte	La CH M-Bayet 94 St-And		Cheurlot	Poitou 95	122	FAI
1	103	Jossien	Portrait de G.Brochard		VL	Deutsche Meisterschaft	122	Segrave
	103	Schandel	Cambrai 94		Besnard	Spécial CH Est	123	
	104	Schande1	Helchteren 94		Cerny	Solstice à Toulon	123	
	104	Schandel .	Niort 94 National SAM-C		Hines	Maxmen Internat. 96	123	
	104	Schandel	Pardines 94 Ch.de Franc	114	Lepage	CH 96 St-André	123	Darrouzes
	104	Allegret	Aéro-philatélie	114	Dremière	Cambrai 1996	124	Simon
	104	Delcroix	Ch.de France 94	114	Coussens	1995 America's Cup	124	Méritte
	105	FAI	Kiev 94 Ch.d'Europe	114	Darrouzès	Manifestation du 31.3.9	124	Frugoli
	105	FAI	Kiev 94 Ch.du monde jun	115	Schandel	Ch.Europe Maniago 96	124	Thedo
	105	Terron	Campeonato España 94	115	Klinck	Indoor à Angers	124	٧L
	105	Carles	Pardines 1994 F1B		VL	Ch.Monde F1D Moscow 96	124	Cerny
		FAI	C.du Monde + Eur.F1E		Delcroix	Orléans 1996	125	Schande1
	105	Gerlaud	Anniversaire	115	Segrave	Poitou 1996	125	Grégoire
	106	MRoo7	Le Luc 1994	115	Koutny	Openscale 1996	125	Delcroix
	106	De Visser	Pacific FF Champ	115	Le Vey	Stonehenge Cup 96	125	FAI
	106	Jossien	Portrait de G.Brière	115	VL	Karlsruhe 96	125	Segrave
	106	Gastaldo	Torino AGO 1994	116	Schande1	Ch.France St-Yan 96	126	
	106	FAI	Ch.du Monde F1D		Carles	St-Yan en F1B	126	Schandel
	106	Van Hauvear		116	Schandel	Sélection	126	Koutny
		FAI	Coupe du Monde 94		Besnard A.	Ch. Monde juniors	126	Schandel
	107	Méritte	La CH M-Bayet 95 St.And		Renesson	Middle Wallop 96	127	•
	107	Delcroix	Orléans 94	117		CH Challenge Europe 96	127	
	108		gA.Roux Coupe du Monde 9	117	Segrave	Par ci par là	127	VL
	108	Jossien	Portrait de G.Matherat	117	Hannan De Lean in	Wake.Int.Cup history	127	Joyner
	109	Bodin	ler Crit. Sèvres-Maine	117	Delcroix	St-Denis en Val 1996	127	Joyner
	109	Schandel	Cambrai 1995	117	AT	Coupe du Monde 96	127	FAI
	109	Millet	CH Challenge Europe	118	Lepage	La CH 97		
	109	Schandel	Helchteren 1995	118	Cerny	Solstice 96		

Lettre d'Amérique Letter from America Ch.du monde F1D S1anic

CO2 2es Rencontres 97

Pamproux 97 Ch.de Franc Les F1B au Ch.de France

Excursion toscane F1.GH Campeonato Linares 97 A long rainy summer

World Cup final results

CO2 Coupe Modela CO2

La Coupe d'Hiver 98 La Coupe d'Hiver 98

Orléans 97 Sélection pour 98 Sazena Ch.du m. 1997 Openscale 97 MAQ Ch.de France 97

Scania Cup 97 Stonehenge Cup 97 Concours et déluges en Ch.du monde F1E

Bern 1997

Berne 97

WC Sazena 97

Le Luc 1997 Orléans 97 Pessac 97

Orentano 98
Dutch Champ.97
Karlsruhe 98
Solstice d'hiver 97
Ch.d'Europe Beja 1998
CO2 3es Rencontres CO2

Orléans 98
50 Minute Club
2 min. Moncontour 98
Ch.de F. Rezonville 98

Poitou 98 Openscale 98 MAQ Viabon Sélection pour 9 Champion du Monde Junio Ch.de France F1B 1998

Bilzen 98

AERODYNAMIQUE générale

102	Rummp	F1A Magic S-20 S-22	112	Halsas-Jolm	aUniversal forming block	124	Jossien
102	Horejsi	F1A 922	114	Hacklinger	Mise au point des MR	124	MRoo7
102	Segrave	Scarlette nouveau conce	115	MRoo7	Précisions sur réglages	125	Jossien
104	Jedelsky	Origine aile Jedelsky	118	MRoo7	Au travail le stabilo !	126	Mueller
104	MRoo7	Moule hélice	119	Glue Guru	Misère de souffle !	126	Segrave
105	MRoo7	Quel profil d'aile F1B	119	Altenkirch	Réglage des biplans	126	Segrave
107	Schaeffler	Quel virage plané?	119	В 3307-Ъ	Profil planeur 120-180	126	Bogart
111	Rocca	Marginaux évolués	121	MRoo7	Autostabilité etc	127	Matherat
112	Woebbeking.	.A1 Hip-Hop	121	Poo1	Notes on Tailless	127	Hadas
112	VL	Techniques inter 93-95	122	Barnette	Construire & régler HLG		

112 Halsas-JolmaSupermoule tronconique 124 Paratore

Hélice et pas
Tailless Autostability
Blocs hélice
CO2 Les profils d'aile
8 Sans-queue caout.
8 Tailless detailed
Autostability touchup
Histoire de l'hélice
Wings with high AR

7989

Elica alto rendimento

CO2 plans et articles

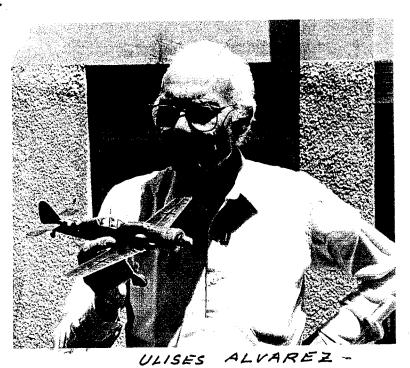
	97	Grégoire	7 moteurs CO2		112	Mueller	Embarquez ! #1		120	VL	La guerre du CO2 ?
	98	12 profils	corde 112		112	Ahl	Ennuis ?		121	CIAM	Règlement F1K
	99	Hach	WH-021 de début	#	112	Schaupp	WS 1/94	#	121	Mueller	Puissance et Froid
	100	Gagg1	1993	#	113	Mueller	Embarquez ! #2		122	Hoebinger	Hoe-1
		Grégoire	CO2 en France		113	Gaggl	Canard 0.12 mm3		123	Woebbeking	Coco aile basse
	104	Grégoire	Conseils CO2		114	Gaggl	Very small motors		123	Mueller	Chargeur et moteur
	105	Swoboda	Isis 024		114	Gagg1	Erdbohrer 1 & 2		123	Hach	WH36
	105	Hach	Le moteur WS-79		114	Ah1	Espen1aub		123	Collet	Coupe Modela CO2
ı	106	Hach	WH-027	#	115	Harsfalvi	Kele.96		123	Woebbeking	Neue Klasse F1K
	106	Hach	WH-026	#	115	Grégoire	Longue vie au moteur		124	Mueller	Cellule et réglage
	107	Méritte	Miss America		116	Grégoire	Réglages Moteur		125	Grégoire	3èmes Rencontres CO2
	107	Harsfalvi	Kele coffr.dépron		117	Hach	Neue Regelvorschläge		125	Kucera	Tsunani 1
	108	Hach	Déthermalos spéciaux	[117	Hach	WH-031	#	125	Mueller	Modifs et Canicules
L	108	Hach	Sicher zu Boden		118	Grégoire	Co2smique	#	126	Mueller	Les profils d'aile
ŀ	109	Grégoire	Moteur Modela 'S'		118	Grégoire	Une montée efficace		127	Hach	Neuer Motor GMW-73
	111	Hach	WH-026	#	119	Grégoire	2èmes rencontres 97				

MATÉRIAUX NOUVEAUX

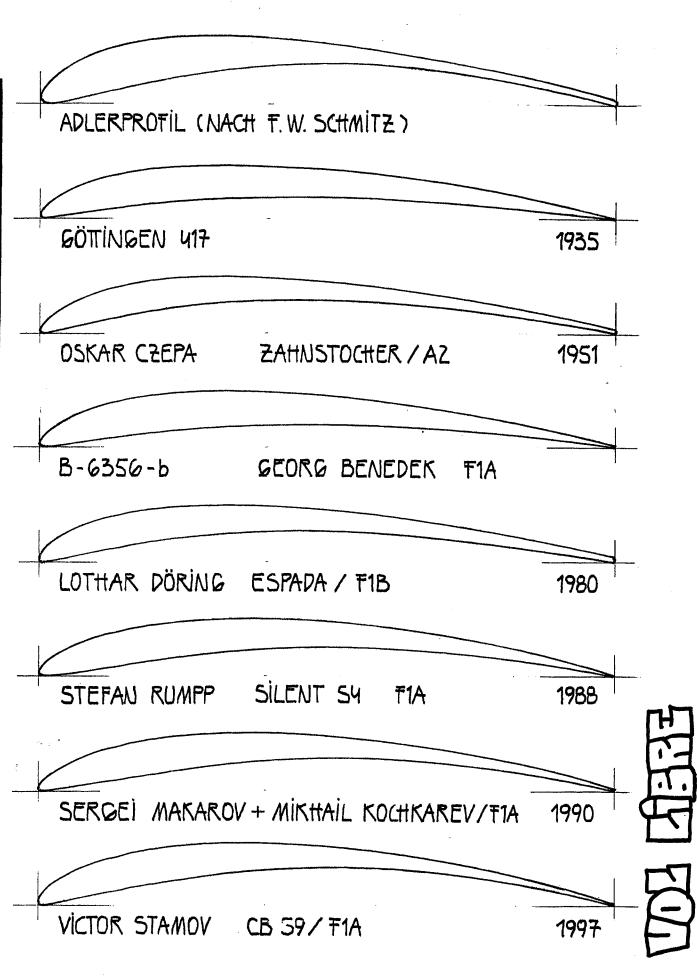
119 Harsfalvi Kele-X 97

100	MRoo7	Nervures en géodésique	112	Gregorie	High tech at the WC	119	Alvarez	Mouler un cockpit
101	Eggimann	F1B Jonathan 93	113	Gerlaud	F1B I1d	119	Segrave	Box clever with a D
101	VL	Symposium F1B Oregon	113	Dupuis	CH Zébul 24	119	Barker	Rubber motor turns
101	MRoo7	Pales sous pression	113	V L	FF Forum 1995	120	Prey	Micafilm sur Silkspan
102	Rummp	F1A Magic S-20 S-22	114	MRoo7.	L'axe de 3	121	Rapin	Poutre dural-carbone
102	Horejsi	F1A 922	115	Segrave	Stab < 2g	121	Woodhouse	Japon sur Mylar
102	Matherat	F1B Standard'93	115	Alvarez	Fuselage from polystyre	122	Rapin	Tube Fdv Kevlar Carbone
102	MRoo7	Cône balsa/FDV	116	Van Wallene	FIA Ex Span	123	Aringer	FIC
102		Technique des Composite	118	Marilier	F1A N°22	123	Di Rienzo	Matér. composites #1
104	Alvarez	Impact: Analyse	118	Naud	CH N.R.VIII	124	Di Rienzo	Matér, composites #2
105	Carles	Aile GB F1B styrofoam	118	Alvarez	Fuselage rond balsa	125	Di Rienzo	Matér. composites #3
105	MRoo7	Quel profil d'aile F1B	118	Alvarez	Tailler un pilote	126	Koster	F1C Excalibur
108		Micafilm mode d'emploi	119	Thebault	DIV plan.début Ufolep d	126	Di Rienzo	Matér. composites #4
109	Davidson	Le Polyspan	119	Barker	Remontez exact !	127	VL	Réalisations mat. compo

HERMENEGILDO .- SUITE DE L. P. 7986


construction de son modèle.

112 Latajacy


Une fois arrivé chez lui, HERMENEGILDO commença par lire attentivement les spécifications du matériel utilisé, attitude fortement conseillée, bien que tardive.

ET CE FUT QU'IL TROUVA AU DERNIER PARAGRAPHE LA CLE DE SON ECHEC : TEMPERATURE DE FUSION : 35 °C "

FREITLUGPROTILE 1935-1997

Bravo pour l'encart publicitaire dans "Aéromodèles" n•19 sur "Vol Libre", j'espère que vous toucherez de nouveaux lecteurs pour votre revue qui traite "du" sujet qui est quand même le point de départ de toutes les disciplines de l'aéromodélisme : le Vol Libre, qu'on se le dise!

Thook forward to seeing turther issues of this most interesting publication still the only free flight magazine with sections in different Languages—truly the international voice of free flight!

JACQUES VALERY.—some—

Mours sincerely

Quelques temps plus tard, il fut recruté par Airbus Industrie comme formateur sur simulateur à Toulouse. C'était une nouvelle vie qui s'ouvrait, tout en renouant avec ce milieu de l'aviation et de Toulouse qui lui était resté cher. En revanche, cela le conduisit à mettre en veilleuse ses tâches d'animateur modéliste à l'Aéro_club des Landes, grâce auxquelles il avait fait éclore ou fructifier bien des talents chez quelques jeunes, Ducassou, Moncot, Prunier, Le Saint...

La santé lui lança un premier avertissement au lendemain du Championnat Indoor d'Angers, en 1996. Le répit de 1997 lui permit de participer brillamment au championnat indoor de Mont de Marsan, ainsi qu'à celui de 1998. Mais, dès l'été, il y eut le retour et il ne put concourir au championnat de Rezonville. Ses forces l'abandonnèrent pendant l'hiver 98-99, ruinant les projets qu'il forgeait, anéantissant sa nouvelle fonction de Président de l'Aéro-Club des Landes à laquelle l'avaient conduit ses talents, son allant et la confiance de ses amis. Le 7 avril, ce fut la fin.

Vrai modéliste, concepteur, constructeur, metteur au point, compétiteur, Jacques avait pour lui de solides connaissances de technique aéronautique, qu'il n'hésitait pas à extrapoler sur les modèles de vol libre ou de vol circulaire, ce dernier avait un temps retenu son attention en acrobatie et en team-racing. Cependant, la R.C., où il aurait certainement brillé, ne l'a jamais tenté. Ajoutons à cela des doigts de fée, qui lui permettaient de tourner impeccablement n'importe qu'elle pièce, d'imaginer réaliser et faire fonctionner toute sorte de dispositifs constructifs ou de règlage. Sa machine à découper le styroforam était une merveille, son « Tchancaïre » (l'Echassier), wakefield de 30 d'allongement cumulait efficacement les audaces techniques et l'esthétique d'une construction impeccable.

Mais, Jacques, c'était aussi un esprit ouvert, chaleureux, et multiple! Amateur de photo -ah! les Leica!, tapant le jazz -qu'il avait connu à Montauban chez le célèbre Hugues Panassié- sur le piano ou la guitare, militant des droits de l'homme -il avait été président local du M.R.A.P.-, fourré dans toutes les associations, il avait tous les dons, y compris celui d'une humeur toujours égale, celui d'avoir des copains partout, et celui d'avoir toujours sa porte ouverte... Il aimait tant la vie... Nous avons perdu un modéliste, nous avons perdu un ami, les hommes ont perdu un des leurs...

ATTENTION

CHANGEMENT DE DATE!

Le concours prévu pour le week end de PENTECOTE par Le CLUB de

ROMANS est AVANCE au

SAMEDI 8 et DIMANCHE 9 MAI

DECES CHEZ DELCROIX

Mon père Charles s'est éteint le 29 mars 1999 au matin . Je retiendrai le remerciement immense dans ses yeux quand je l'ai couché pour la dernière fois ! Ceux qui l'ont connu ne doivent avoir de peine . Victime d'une hémiplégie voici quatre ans il avait assez souffert pour aspirer au repos .

Jacques DELCROIX .

£3.50 off Your next PAMAG subscription

When you introduce a friend who takes out a subscription to

FLYING MODEL DESIGNER & CONSTRUCTOR

is a magazine for ALL aeromodellers, covering Free Flight,
Control Line and Radio Control. It is a quality publication containing
feature articles, reviews, full size plans, reader's letters, etc.,
fully typeset with many clear photographs.

If you would like a sample please send £3.50 together with the completed form below *or* alternatively you can take out a 4 issue subscription (£14 UK, £18 overseas surface, £26 airmail).

Clip the coupon and return with your remittance.

To: PAMAG (Publications) Ltd 3 Lowfield Court, Old Forge Business Park, Sark Road, Sheffield S2 4HG. England. Telephone: 0114 255 0641

Tick ☐ Please send me a sample copy of Flying Model Designer & Constructor

Tick ☐ Please enter my subscription to Flying Model Designer & Constructor

I enclose cheque/postal/international money order made out to PAMAG

(Publications) Ltd for £_____ or please debit my credit card.

MASTERCARD/EUROCARD/VISA Expiry Date: / /

Card No._____

Name and Address _____

Signed _____ Date: / /

Introduced by: _____

四组组

Dhute - A . STHANDEL. -